[发明专利]一种基于自适应网络深度的序列推荐方法和系统在审
申请号: | 202010835626.X | 申请日: | 2020-08-19 |
公开(公告)号: | CN111931058A | 公开(公告)日: | 2020-11-13 |
发明(设计)人: | 陈磊;杨敏;原发杰;李成明;姜青山 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | G06F16/9535 | 分类号: | G06F16/9535;G06Q30/06;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京市诚辉律师事务所 11430 | 代理人: | 耿慧敏 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 自适应 网络 深度 序列 推荐 方法 系统 | ||
本发明公开了一种基于自适应网络深度的序列推荐方法和系统。该方法包括:构建序列推荐模型,该序列推荐模型设有多个空洞卷积残差块作为主体网络,并设有用于管理主体网络深度的策略网络;以设定的损失函数为目标,利用样本集训练所述序列推荐模型,获得经训练的主体网络,并且对于所述多个空洞卷积残差块中的每一个,策略网络输出用于表征该空洞卷积残差块保留或跳过的决策指示;将待推荐用户的历史浏览序列输入经训练的序列推荐模型,并根据策略网络的决策指示确定需跳过的空洞卷积残差块,以输出后续时刻用户推荐项的预测结果。本发明能够利用策略网络自适应地调节主体网络的深度,能够为用户提供快速而准确的推荐服务。
技术领域
本发明涉及序列推荐技术领域,更具体地,涉及一种基于自适应网络深度的序列推荐方法和系统。
背景技术
推荐系统是近年来研究十分火热,发展也十分迅速的领域,因其广阔的应用场景以及巨大的商业价值而备受瞩目,其定义为利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程,而个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。序列推荐系统是推荐系统中的一个重要分支,其目的是通过分析用户的历史浏览序列,对用户进行精准推荐,一直是学术界和工业界关注的热点研究问题。
以常用的序列推荐模型NextItNet为例,其结合了空洞卷积神经网络以及残差网络,能够较好地对用户历史浏览序列进行建模,从而更好地为用户提供推荐服务,在序列推荐系统中发挥出优异的效果。
NextItNet的模型结构如图1所示,其总体上由多个结构相同的空洞卷积残差块堆叠而成,将用户历史浏览序列输入整个网络,进行建模,在通过最后一个空洞卷积残差块后,得到用户喜好表征,最后再通过一个Softmax分类器,预测下一时刻向用户进行推荐的项(item)。
NextItNet中空洞卷积残差块的输出表示为:
Xl+1=Xl+F(Xl)
即每个空洞卷积残差块的输出Xl+1为输入Xl加上本残差块处理后的结果F(Xl)。F(Xl)处理过程为依次输入空洞卷积层1(Dilated Conv1)、层归一化层1(Layer Norm1)、ReLU激活层1(ReLU1)、空洞卷积层2(Dilated Conv2)、层归一化层2(Layer Norm2)和ReLU激活层2(ReLU2)处理后输出。
然而,利用现有的序列推荐模型进行推荐服务时,存在模型参数量、模型所需计算开销高、推断时间过长等问题。例如,NextItNet需要堆叠大量的空洞卷积残差块才能发挥出更佳的效果,导致模型参数量巨大,而且针对每个输入进来的用户历史浏览序列都需要经过完整的模型才能完成输出预测,这样将训练好的模型部署于实际应用时较为困难,计算开销大,在进行推断时花费时间也较长,难以满足用户的实际需求。
发明内容
本发明的目的是克服上述现有技术的缺陷,提供一种基于自适应网络深度的序列推荐方法和系统,通过自适应地调节序列推荐模型的深度来提高推荐服务的效率。
根据本发明的第一方面,提供一种基于自适应网络深度的序列推荐方法。该方法包括以下步骤:
构建序列推荐模型,该序列推荐模型设有多个空洞卷积残差块作为主体网络,并设有用于管理主体网络深度的策略网络;
以设定的损失函数为目标,利用样本集训练所述序列推荐模型,获得经训练的主体网络,并且对于所述多个空洞卷积残差块中的每一个,策略网络输出用于表征该空洞卷积残差块保留或跳过的决策指示;
将待推荐用户的历史浏览序列输入经训练的序列推荐模型,并根据策略网络的决策指示确定需跳过的空洞卷积残差块,以输出后续时刻用户推荐项的预测结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010835626.X/2.html,转载请声明来源钻瓜专利网。