[发明专利]一种基于CPU的生物分子可视化光线追踪渲染方法有效
申请号: | 202010844072.X | 申请日: | 2020-08-20 |
公开(公告)号: | CN112116693B | 公开(公告)日: | 2023-09-15 |
发明(设计)人: | 纪庆革;李家振;张永东;杜云飞 | 申请(专利权)人: | 中山大学 |
主分类号: | G06T15/06 | 分类号: | G06T15/06;G06T1/20 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 林梅繁 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 cpu 生物 分子 可视化 光线 追踪 渲染 方法 | ||
1.一种基于CPU的生物分子可视化光线追踪渲染方法,其特征在于:构建三维场景,并根据原子信息构建生物分子的空间填充表达模型;将空间填充表达模型实例化为可变换实例,将可变换实例绑定加入到所构建的三维场景中;通过光线从摄像机出发经过像素点射向构建好的三维场景中,若光线与三维场景中的原子没有相交,则结束追踪,以背景颜色作为像素颜色;若光线与三维场景中的原子发生相交,则计算生成反射光线,并设置多个光源分别从多个不同方向射向生物分子的空间填充表达模型以继续追踪反射光线,若反射光线与所设置的多个光源中的光线相交,则加入光照贡献值,否则不加入光照贡献值;最后采用渲染方程,根据原子自身颜色和光照度贡献值计算像素的颜色值;
所述方法通过本地光线追踪实现,包括步骤:
步骤S11、解析分子文件,获取原子信息;
步骤S12、利用所获得取的原子信息,遍历所有原子,并用不同类型原子对应的范德华半径作为半径的球体代表原子,构建生物分子的空间填充表达模型,并将生物分子的空间填充表达模型实例化为可变换实例;
步骤S13、构建三维场景,将可变换实例绑定加入到所构建的三维场景中,根据生物分子的空间填充表达模型的大小定义摄像机的初始位置;
步骤S14、通过交互动作对摄像机进行控制,实现生物分子的空间填充表达模型旋转变换,生成每帧交互信息并更新摄像机位置参数和变换生物分子的空间填充表达模型;然后利用光线追踪渲染算法计算每个像素点的颜色值,存入帧缓存完成每帧画面渲染。
2.根据权利要求1所述的生物分子可视化光线追踪渲染方法,其特征在于,步骤S14中光线追踪渲染算法的步骤包括:
步骤S141、对可视化屏幕的像素空间进行分块,分块后将每个空间块的计算工作分配给不同的线程,每个线程同时执行渲染任务,并行计算每个空间块内的像素颜色值;
步骤S142、对于每个空间块内的计算任务,从当前的摄像机位置经像素空间的像素点发射光线,射向三维场景中;
步骤S143、计算光线与三维场景中生物分子的空间填充表达模型的原子相交的情况,若光线与原子没有相交,则光线射向背景,结束追踪,像素颜色直接取值为黑色,并返回;若光线与原子发生相交,则读取对应的原子类型信息,根据原子类型信息获取该原子类型对应的颜色值并记录,并从光线与原子的相交点处生成反射光线,再转入步骤S144;
步骤S144、设置多个点光源分别从多个不同方向射向空间填充表达模型以获得渲染效果,遍历多个点光源,计算所述反射光线与点光源的相交情况,若无相交则该点光源对颜色值无贡献;若发生相交则计算该点光源对颜色值的光照贡献值;
步骤S145、利用步骤S143中获取的颜色值和步骤S144中计算的光照贡献值,通过渲染方程计算像素点的颜色值;
步骤S146、每个线程完成像素点颜色值的计算后,将结果存入帧缓存中对应空间块的坐标位置,所有空间块完成计算后将合成完整像素空间的帧缓存。
3.根据权利要求2所述的生物分子可视化光线追踪渲染方法,其特征在于,步骤S145的渲染方程为:
Le=La+∑(w1×La×D+w2×S)
其中,Le为像素最终颜色值,La为原子自身颜色;∑(w1×La×D+w2×S)为不同点光源所产生的光照贡献值的累加项,w1和w2皆为与反射光线相交的点光源对应光照贡献值的权重;D为光线在与原子的相交点法线上的投影量,用于计算高光效果,D=-(lp·Ns),其中lp为光源方向,Ns是光线与原子的相交点的归一化法向量;S为反射光线在光源方向上的投影量,S=(lr·lp)10,其中lr是反射光线。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010844072.X/1.html,转载请声明来源钻瓜专利网。