[发明专利]一种水表读数识别的方法以及相关装置在审
申请号: | 202010871008.0 | 申请日: | 2020-08-26 |
公开(公告)号: | CN112101345A | 公开(公告)日: | 2020-12-18 |
发明(设计)人: | 罗华 | 申请(专利权)人: | 贵州优特云科技有限公司 |
主分类号: | G06K9/32 | 分类号: | G06K9/32;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京轻创知识产权代理有限公司 11212 | 代理人: | 何佩英 |
地址: | 550003 贵州省贵阳市贵阳国家高新技*** | 国省代码: | 贵州;52 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 水表 读数 识别 方法 以及 相关 装置 | ||
本申请实施例公开了一种水表读数识别的方法以及相关装置,用于提高识别水表读数的效率。获取目标水表图;将所述目标水表图输入目标检测模型,得到目标水表读数框坐标,所述目标检测模型为基于卷积神经网络的网络模型;根据所述目标水表读数框坐标,从所述目标水表图中提取目标水表读数框图;将所述目标水表读数框图输入目标识别模型,得到目标水表读数,所述目标识别模型为基于卷积神经网络的网络模型。
技术领域
本申请实施例涉及图像处理技术领域,尤其涉及一种水表读数识别的方法以及相关装置。
背景技术
水表,是测量水流量的仪表,起源于英国,水表的发展已有近二百年的历史。水表发展到如今,不论是在家庭用水计量,还是在企业用水计量上都得到了广泛的应用。
现在普遍的水表数据记录是人工抄表记录,然而这种方式全程都需要人工进行操作,效率十分低下。
发明内容
本申请实施例提供了一种水表读数识别的方法以及相关装置,可以提高识别水表读数的效率。
本申请实施例第一方面提供了一种水表读数识别的方法,包括:
获取目标水表图;
将所述目标水表图输入目标检测模型,得到目标水表读数框坐标,所述目标检测模型为基于卷积神经网络的网络模型;
根据所述目标水表读数框坐标,从所述目标水表图中提取目标水表读数框图;
将所述目标水表读数框图输入目标识别模型,得到目标水表读数,所述目标识别模型为基于卷积神经网络的网络模型。
可选的,在获取目标水表图之前,所述方法还包括:
训练初始检测模型,得到目标检测模型。
可选的,所述训练初始检测模型,得到目标检测模型包括:
将检测样本集输入初始检测模型,所述检测样本集包含至少2张预先标记好水表读数框的水表图;
随机将所述检测样本集按每M张水表图分组,所述M大于等于1;
将任一组样本在所述初始检测模型中正向传播,得到每张水表图的水表读数框坐标;
根据检测总损失函数计算检测总损失值,并反向更新所述初始检测模型,所述检测总损失值由分类损失值和回归损失值组成;
将所述检测样本集剩下的每一组样本依次在更新后的所述初始检测模型中正向传播,进行检测总损失值计算,并反向更新上一组样本更新过的所述初始检测模型;
计算所述检测样本集的平均检测总损失值;
依次重复上述步骤以进行下一次迭代,当达到迭代收敛条件后,将最后一次迭代得到的所述初始检测模型确定为目标检测模型。
可选的,所述将任一组样本在所述初始检测模型中正向传播,得到每张水表图的水表读数框坐标包括:
提取任一组样本的每张水表图的特征图;
根据所述特征图生成候选框;
对所述候选框进行分类和回归;
将所述候选框映射到所述特征图上,得到水表读数框坐标。
可选的,所述根据所述特征图生成候选框包括:
根据所述特征图生成旋转候选框;
所述对所述候选框进行分类和回归包括:
对所述旋转候选框进行分类和回归;
将所述候选框映射到所述特征图上,得到水表读数框坐标包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于贵州优特云科技有限公司,未经贵州优特云科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010871008.0/2.html,转载请声明来源钻瓜专利网。