[发明专利]一种网络加密流量识别方法及装置有效

专利信息
申请号: 202010885293.1 申请日: 2020-08-28
公开(公告)号: CN112163594B 公开(公告)日: 2022-07-26
发明(设计)人: 徐小龙;林焜达 申请(专利权)人: 南京邮电大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 张欢欢
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 网络 加密 流量 识别 方法 装置
【说明书】:

发明公开了一种网络加密流量识别方法及装置,该方法包含预处理阶段和分类阶段。预处理阶段对原始流量进行流切分,采样,向量化和标准化,并提出大流流中采样方案,解决大流流量的分类问题。分类阶段先使用CNN进行空间特征捕获和抽象特征抽取,然后在抽象特征的基础上使用堆叠双向LSTM学习流量时序特征,实现加密流量的自动特征提取和高效识别。该方法具有通用性,能够自动提取加密流量时空特征而无需专家手动特征设计,并且,它能够适应不同加密技术、混淆技术引起流量特征变化。

技术领域

本发明具体涉及一种网络加密流量识别方法,还涉及一种网络加密流量识别装置,属于深度学习、网络流量分析和网络空间安全应用技术领域。

背景技术

流量分类是现代网络通讯中最重要的任务之一,但是由于加密技术的普及和网络吞吐量的高速增长,实现高速准确的加密流量识别变得越来越困难。加密流量分类对于流量工程、网络资源管理、QoS(Quality of Service)、网络空间安全管理等有着重要的意义。近年来,在新型网络领域例如物联网网络、软件定义网络、移动互联网中同样出现了加密流量分析管理的巨大需求。因为上述原因,网络流量分类吸引了越来越多的来自学术界、工业界两方面研究人员的注意。

近来,随着人们在安全性和隐私性方面的需求越来越高,流量加密技术逐步发展,加密流量如今已经成为了工业界普遍的做法,研究指出,到2020年将有超过83%的流量被加密。经过加密程序,流量变得随机化,这种伪随机格式使得流量的解析变得非常困难。另一方面,ISP(Internet Service Provider)通常需要对某些类型的流量进行监测或控制(例如P2P,入侵攻击等等),为了规避监测系统或防火墙的检测,一些开发商使用了各种协议嵌入和流量混淆技术。显然,流量加密、混淆技术的出现,一方面满足了人们的需求,提高了安全性和隐私性,另一方面也对网络的管理提出了更大的挑战。因此,加密流量分类成为了流量工程、入侵检测等任务中的关键技术。

现有加密流量分类的解决方案大致可以分为三种:基于端口、基于荷载(例如,深度包检测,Deep Packet Inspection,简称DPI)、基于统计特征。由于动态端口和端口伪装技术的盛行,传统基于端口方法的流量分类的准确率很低。而基于荷载检测方法,如DPI,它类似于字符串正则匹配算法,需要指纹库中的所有样本都需要和完整的流量进行匹配,因而效率很低,更重要的是,这些指纹一般难以用于识别加密流量。现有的工作更多集中于基于统计的机器学习方法。这类方法需要专家手动设计、提取流量的统计特征,从而对流量进行较为准确的分类。然而,基于统计特征的机器学习方法,专家需要对不同场景下的流量设计不同的统计特征,成本很高,也无法保证提取的特征对提高分类结果的有效性。基于以上原因,这些方法难以满足人们在解决加密流量分类问题中的需求。

近来,深度学习迅速发展,在计算机视觉、自然语言处理等等领域取得了令人瞩目的成果,其中包括大量的分类问题(例如,图像分类,文本情感分析)。与此同时,深度学习方法也逐渐应用于网络领域,例如流量分类就可以当作一个典型的分类问题。在深度学习方法中,CNN(卷积神经网络)擅长捕获数据空间特征,RNN(循环神经网络)擅长捕获数据时间特征。已经有一些研究使用深度学习对加密流量进行分类,其中大多数使用CNN,在包级别上捕获流量的字节特征,但对于包与包之间,时间序列的时序特征没有很好的利用。

综上所述,当前工作中对于加密流量分类的研究仍存在以下不足:

1)随着加密技术和混淆技术的普及,流量特征容易变化,基于规则的方法(包括基于端口、基于荷载的方法)规则提取困难,流量变动之后容易失效,时间效率低。

2)基于统计的机器学习方法,手动设计特征困难,为获取更准确流量统计特征通常需要更加耗时的离线算法,实时性差。

3)基于深度学习的研究仍然较少,现有工作没有有效利用流量的时空特征。

发明内容

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010885293.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top