[发明专利]用于抑制直驱风机次同步振荡的机网协调反馈控制方法有效
申请号: | 202010892957.7 | 申请日: | 2020-08-31 |
公开(公告)号: | CN112202186B | 公开(公告)日: | 2022-03-29 |
发明(设计)人: | 张鹏;韩晨阳;李星原 | 申请(专利权)人: | 华北电力大学 |
主分类号: | H02J3/24 | 分类号: | H02J3/24;H02J3/36;H02J3/38 |
代理公司: | 北京卫平智业专利代理事务所(普通合伙) 11392 | 代理人: | 张新利;谢建玲 |
地址: | 102200 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用于 抑制 风机 同步 振荡 协调 反馈 控制 方法 | ||
1.一种用于抑制直驱风机次同步振荡的机网协调反馈控制方法,其特征在于,包括以下步骤:
步骤1:将柔性直流输电系统、直驱风机模型线性化,建立包含全部状态变量的经柔性直流输电系统并网的直驱风机小信号模型;
步骤2:设计机侧和网侧仅采用本侧状态量参与反馈的机网协调反馈控制器的控制向量;
步骤3:机网协调反馈控制器参数整定;
步骤4:对机网协调反馈控制器进行降阶;
机网协调反馈控制方法使用两种不同的参考坐标系对所用的电气量坐标进行变换;柔性直流输电系统送端控制器基于任一给定的旋转角速度为100πrad/s的旋转坐标系,将此坐标系命名为标准坐标系;当同一电气量以PCC点电压Us作为定向参考时,其d、q轴分量的上角标标记有c,无标记则为基于标准坐标系的定向;使用的电气量符号中,以下角标0表示稳态初值;Δ表示增量;
直驱风机模型线性化的具体步骤如下:将直驱风机的各个部分的数学模型进行线性化,线性化模型以标幺值进行计算;交流矢量旋转角速度基值为ωB=100πrad/s;输出电流Is以UE的定向为基准的线性化方程如下式(1),其中usd、usq分别为PCC点电压Us的d、q轴分量,ued、ueq分别为柔性直流输电系统送端交流电压UE的d、q轴分量,isd、isq分别为输出电流Is基于标准坐标系定向的d、q轴分量;变压器等效电感L的大小为ls;
PCC点电压Us的线性化方程如下式(2),其中滤波电容Cg的值为cg,电阻Rg的值为rg,滤波电感Lg的值为lg;ucd、ucq分别为变流器交流侧出口电压Uc的d、q轴分量;igd、igq分别为交流侧电流Ig的d、q轴分量;
下式(3)为变流器交流侧的滤波电感Lg的电流Ig的小信号线性化方程;
网侧变流器直流母线小信号方程如下式(4),其中直流电容Cd的值为cd,Udc为直流电压:
控制器的坐标变换定向角度由锁相环提供;锁相环比例系数为kp,锁相环积分系数为ki,建立辅助中间变量Z,由PCC点电压Us确定的坐标系和送端交流电压UE确定的坐标系之间定向角度差为θpll,s表示复频域下的频率参数;锁相环线性化方程如下式(5):
直驱风机的网侧变流器控制直流母线的电压和转子的无功功率,其回路结构分为外环控制器和内环控制器;外环控制器控制直流电压,内环控制器控制电流;d轴外环指令值为直流电压指令值Udc*;q轴内环指令值为q轴电流指令值igq*;为d轴内环指令值,kp1、ki1分别为外环控制器的比例系数、积分系数;建立辅助中间变量Z1,得到d轴外环的方程:
ucd*为控制器输出d轴电压指令值,kp3、ki3分别为d轴内环控制器的比例系数、积分系数,系统的交流矢量旋转角速度初值为ω0,建立辅助中间变量Z3,得到d轴内环的方程:
ucq*为控制器输出q轴电压指令值,kp4、ki4分别为q轴内环控制器的比例系数、积分系数,建立辅助中间变量Z4,得到q轴外环的方程:
变流器增益大小表示为kPWM,变流器开关周期为Tδ;控制器输出的控制信号与变流器交流侧的电压的关系如下:
变流器载波幅值为M,将(9)式线性化可得:
柔性直流输电系统线性化的具体步骤如下:将柔性直流输电系统各个部分线性化;送端交流电压UE的线性化方程如下式(11),其中,urd、urq分别为送端变流器交流侧出口电压Ur的d、q轴分量;ird、irq分别为送端变流器交流侧电流Ir的d、q轴分量;送端滤波电容Cr的值为cr,送端电阻Rr的值为rr,送端滤波电感Lr的值为lr;
送端变流器交流侧滤波电感Lr的电流Ir的小信号线性化方程如式(12);
柔性直流输电系统的直流母线电感Ldr的大小为ldr,直流母线电容Cdr的大小为cdr,直流母线电容电压大小为Udr,直流母线电流大小为Idr,直流电压源电压大小为Edc;
直流母线电容电压线性化方程为式(13):
直流母线电流Idr线性化方程为式(14):
送端控制器的d、q轴分别控制送端交流电压UE的d、q轴分量,送端控制器的d、q轴指令值分别为E*sd、E*sq;urd*为送端控制器输出d轴电压指令值,kp5、ki5分别为送端d轴控制器的比例系数、积分系数;建立辅助中间变量Z5,得到d轴控制器方程(15):
urq*为送端控制器输出q轴电压指令值,kp6、ki6分别为送端q轴控制器的比例系数、积分系数;建立辅助中间变量Z6,得到q轴控制器的方程(16):
与式(9)、(10)同理可得送端控制器输出的控制信号与送端变流器交流侧出口电压的关系如下式(9):
建立经柔性直流输电系统并网的直驱风机小信号模型的具体步骤如下:联立式(1)至(17),得到经柔性直流输电系统并网的直驱风机线性化小信号模型:
其中,状态变量X=[X1,X2];X1为直驱风机的状态变量,设X1=[ΔUdc,Δucd,Δucq,ΔZ,Δθpll,ΔZ1,ΔZ3,ΔZ4,Δigd,Δigq,Δusd,Δusq,Δisd,Δisq]T;X2为柔性直流输电系统的状态变量,X2=[Δued,Δueq,Δird,Δirq,Δurd,Δurq,ΔZ5,ΔZ6,ΔUdr,ΔIdr]T;控制变量U=[ΔUdc*,Δigq*,ΔE*sd、ΔE*sq]T,A为24阶方阵,B为24×4阶矩阵,矩阵的上角标T表示矩阵转置;
步骤2的具体步骤如下:直驱风机的控制器输入量包括直流电压指令值Udc*和q轴电流指令值igq*,U*dcf为直流电压反馈量指令值,i*gqf为q轴电流反馈量指令值;
柔性直流输电系统送端控制器的d、q轴分别控制送端交流电压UE的d、q轴分量,送端控制器的d、q轴指令值分别为E*sd、E*sq,E*sdf、E*sqf分别为送端控制器的d、q轴输入端的反馈量;
则机侧和网侧均仅采用本侧状态量参与反馈的反馈控制器的向量形式如式(19),Uf代表反馈控制向量;
其中,K为待求的机网协调反馈控制器反馈参数矩阵,为4×24阶矩阵;K1为对应直驱风机状态变量X1的反馈参数矩阵,为2×14阶矩阵;K2为对应柔性直流输电系统的状态变量X2的反馈参数矩阵,为2×10阶矩阵;
步骤3的具体步骤如下:
反馈控制器的控制目标是使得式(20)所示的二次型性能指标泛函J达到极小值Jmin,从而通过对全系统状态变量振荡的约束,实现机网协调控制目标;
式(20)中,t为时间;Q为24阶状态量权重系数矩阵,其元素的大小反映了各个对应的状态量对振荡的影响程度;R为4阶控制量权重系数矩阵,其元素大小体现了对控制量的限制,使反馈控制量的大小在合理范围内;
在求解反馈控制器参数之前,需要先确定Q和R的取值;为了使系统遇到扰动后的振荡在最短时间内收敛,采用李雅普诺夫稳定判据,使泛函达到极小值,其具体形式为下式(21)至(23);其中,I为单位矩阵;Eb为附加反馈控制闭环系统的特征值;Sb为正定系数矩阵;
Eb=A-BR-1BTPb (21)
EbTQ+QEb=-Sb (22)
EbSb-2+Sb-2EbT=-I (23)
式(21)中,Pb为未知中间量矩阵,其值通过式(24)黎卡梯方程求解,当反馈控制器的参数满足黎卡梯方程时,式(20)所示泛函达到极小值;
ATPb+PbA-PbBR-1BTPb+Q=0 (24)
联立式(21)至(24),求解得到Q;
确定矩阵Q和R取值后,求解机网协调反馈控制器反馈参数矩阵Ka;Ka所对应的机网协调反馈控制器每个输入端都由所有本地状态变量参与反馈;
求解Ka的方程中涉及到一种特殊的矩阵运算方法,命名为分割对角化,分割对角化的运算符号定义为()bd;定义分割对角化的运算方法:此运算只适用于24×4阶矩阵,取任意24×4阶矩阵C为例,将矩阵分块,如式(25);
其中C1为14×2阶矩阵,C2为10×2阶矩阵,C21为10×2阶矩阵,C12为14×2阶矩阵;则有C的分割对角化结果(C)bd如式(26);
求解Ka需求解如式(27)的方程组;
式(27)中,V为待求的24×4阶拉格朗日乘子矩阵;Pc为待求的中间量未知数矩阵;在式(27)方程组的方程①中,V和BTPcV都是24×4阶矩阵,将会用到如式(25)(26)的分割对角化运算;求解得到所有状态变量都参与反馈时的矩阵Ka。
2.如权利要求1所述的用于抑制直驱风机次同步振荡的机网协调反馈控制方法,其特征在于,步骤4的具体步骤如下:
考虑到状态变量的可观测性,对全状态变量参与的机网协调反馈控制器进行降阶;降阶后的机网协调反馈控制器表示为:
其中,X1’=[ΔUdc,Δusd,Δusq,Δisd,Δisq]T;X2’=[Δued,Δueq,Δird,Δirq,ΔUdr,ΔIdr]T,K1’为2×5阶矩阵,K2’为2×6阶矩阵,K’为4×11阶矩阵,K’中各元素均由Ka中对应X1’、X2’的元素直接得来。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学,未经华北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010892957.7/1.html,转载请声明来源钻瓜专利网。