[发明专利]一种基于混合深度神经网络的学生辍课预测方法在审
申请号: | 202010925380.5 | 申请日: | 2020-09-06 |
公开(公告)号: | CN112116137A | 公开(公告)日: | 2020-12-22 |
发明(设计)人: | 刘铁园;张艳;常亮;古天龙;李龙 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/20;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 混合 深度 神经网络 学生 预测 方法 | ||
1.一种基于混合深度神经网络的学生辍课预测方法。其特征是:本发明通过对学生的点击流日志信息进行预处理,生成学生每天的行为表示矩阵,为了刻画学生不同访问时间对辍课行为的影响,通过SE-Net对每一天的行为矩阵进行加权表示,生成每天的行为表示矩阵,然后使用一种新的CNN对行为特征进行局部关系提取,最后通过门控循环单元(GRU)网络进行时间序列关系特征提取,通过softmax层进行最后的预测任务,以此提高辍课预测的精确度。
其特征在于:
2.根据权利要求1所述的一种基于混合深度神经网络的学生辍课预测方法。其特征是:在生成输入数据方面,本发明考虑到时间序列数据的进行了细粒度划分,并使用One-hot编码规则和特征工程相结合,构建行为特征矩阵,有助于提高预测的准确性。
3.根据权利要求1所述的一种基于混合深度神经网络的学生辍课预测方法。其特征是:考虑到不同时间段的学习行为对于最终的辍课预测的影响程度不一样,引入SE-Net网络,通过给每一天的行为矩阵分配权重来决定哪个时间段的行为特征对于辍课预测有决定性作用,从而提高模型的性能。
4.根据权利要求1所述的一种基于混合深度神经网络的学生辍课预测方法。其特征是:特征提取方面,本发明通过使用一种新建的卷积神经网络(CNN),进行局部关系特征提取。
5.根据权利要求1所述的一种基于混合深度神经网络的学生辍课预测方法。其特征是:考虑到行为之间的序列关系,以及模型本身的影响,本发明使用三层的GRU提取行为矩阵之间存在的潜在具有时序关系的行为特征。从模型本身参数设置上,GRU模型比LSTM模型少了一个“门”,既可以减少了模型训练时间而且也不容易产生过拟合问题,最重要的是也能解决行为之间的彼此的关联关系问题。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010925380.5/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理