[发明专利]基于传播异质图建模的社交媒体多模态谣言检测方法有效

专利信息
申请号: 202010940942.3 申请日: 2020-09-09
公开(公告)号: CN112035669B 公开(公告)日: 2021-05-14
发明(设计)人: 毛震东;张勇东;陈鑫;王鹏辉 申请(专利权)人: 中国科学技术大学
主分类号: G06F16/35 分类号: G06F16/35;G06F16/31;G06F40/289;G06K9/62;G06N3/04
代理公司: 北京凯特来知识产权代理有限公司 11260 代理人: 郑立明;韩珂
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 传播 异质图 建模 社交 媒体 多模态 谣言 检测 方法
【权利要求书】:

1.一种基于传播异质图建模的社交媒体多模态谣言检测方法,其特征在于,包括:

获取包含文本、图像以及社交信息的待检测事件;

基于预训练模型进行从文本与图像中各自提取文本特征与图像特征,并对社交信息进行特征编码,获得社交信息特征;

基于文本特征、图像特征以及社交信息特征构建社交媒体异质信息网络图结构,通过节点级别的注意力机制来捕获不同的节点邻居的重要性,通过信息聚合,实现将不同类型节点的信息通过注意力分数聚合到一起,实现特征的融合;

将融合的特征输入至分类器,获得检测结果;

其中,所述社交信息包括:数字特征与类别特征;其中,数字特征包括:待检测事件的转发数目、点赞数目与发布时间、以及相应用户的关注对象数目、粉丝数目以及发帖数目;类别特征包括:用户ID、用户类型、发布平台及事件内容是否为原创;

对于数字特征,进行Z-Sore归一化,表示为:

fnumerical=Z_Score[fretweet,fpraise,ffollower,ftime,ffollowing,ftweet]

其中,f表示特征,retweet表示转发数目,praise表示点赞数目,following表示用户的关注对象数目,time表示发布时间,follower表示用户的粉丝数目,tweet表示用户的发帖数目;

对于类别特征采用One-Hot编码,并采用truncatedSVD进行降维处理,表示为:

fcategorical=[tsvd(fuid),tsvd(fplatform),foriginal,fusr-type]

其中,uid表示用户id,platform表示用户发表工具,original表示用户发表内容是否为原创,user-type表示用户类型,tsvd(.)表示采用truncatedSVD对特征进行降维处理;

再将fnumerical与fcategorical拼接,作为社交信息特征,表示为:

fsocial=Concat[fcategorical,fnumerical]。

2.根据权利要求1所述的一种基于传播异质图建模的社交媒体多模态谣言检测方法,其特征在于,基于预训练模型Bert进行中文文本特征提取,步骤包括:

首先,进行文本预处理:对文本进行数据清洗,去除非文本内容,并对清洗后的文本进行分词,以及引入停用词表,去除文本中无效词语;

然后,将预处理后的文本输入至预训练模型Bert,得到文本特征。

3.根据权利要求1所述的一种基于传播异质图建模的社交媒体多模态谣言检测方法,其特征在于,基于预训练的卷积神经网络进行图像特征的提取;所述卷积神经网络为去除卷积神经网络ResNeSt中顶部全连接层后的网络,网络中最后一个池化层的输出即为提取到的图像特征。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010940942.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top