[发明专利]一种基于复杂网络的疾病进展路径挖掘方法有效
申请号: | 202010971130.5 | 申请日: | 2020-09-16 |
公开(公告)号: | CN112086187B | 公开(公告)日: | 2022-04-19 |
发明(设计)人: | 邱航;罗林;王利亚;胡智栩;周德嘉 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G16H50/20 | 分类号: | G16H50/20;G16H50/70 |
代理公司: | 北京正华智诚专利代理事务所(普通合伙) 11870 | 代理人: | 何凡 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 复杂 网络 疾病 进展 路径 挖掘 方法 | ||
本发明公开了一种基于复杂网络的疾病进展路径挖掘方法,基于临床诊疗数据、基因疾病关联数据和通路疾病关联数据,构建有向表型疾病网络、基于基因的疾病关联网络和基于通路的疾病关联网络,并对节点间的边权值加权求和得到有向的复杂疾病网络;基于病死率对复杂疾病网络进行分类,得到源疾病群和目标疾病群;采用双向最大平均权值路径算法,搜索源疾病到目标疾病的疾病进展路径;最后,计算疾病进展得分,量化疾病进展路径的相对重要性。本发明通过挖掘疾病发展路径,量化疾病进展路径相对重要性,找到存在显著统计学关系的疾病进展轨迹,为疾病预防提供支撑,从而对预防低死亡风险疾病发展成高死亡风险疾病的研究具有重要意义。
技术领域
本发明属于网络科学和医学领域,具体涉及一种基于复杂网络的疾病进展路径挖掘方法。
背景技术
许多疾病之间没有明确的界限,疾病间可以通过多个维度关联。网络分析被认为是分析疾病间关系的有效方法,疾病网络可以全面、系统地阐释疾病之间的关系。近年来,国内外学者围绕基于基因、蛋白质数据的复杂生物网络和基于临床诊断信息的疾病表型网络展开了研究。从分子水平分析疾病与基因、蛋白质之间的关系,有助于发现疾病的发病机制;从临床角度,基于表型相似性对疾病进行系统分类,有助于促进疾病进展模式的识别。如何整合表型数据与分子疾病关联数据,构建复杂疾病网络,是亟待研究的一个关键问题。
进一步地,在疾病网络中,基于疾病之间的先后关系识别疾病进展模式,对预防疾病的并发症或发展成其他疾病具有重要意义。在庞大的疾病网络中,如何高效准确挖掘低风险疾病到高风险疾病具有显著统计学意义的疾病进展路径,是亟需解决的又一关键问题。
发明内容
针对现有技术中的上述不足,本发明提供的一种基于复杂网络的疾病进展路径挖掘方法解决了现有技术中存在的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种基于复杂网络的疾病进展路径挖掘方法,包括以下步骤:
S1、采集临床诊疗数据,并根据临床诊疗数据中疾病患病率和共病信息构建有向表型疾病网络;
S2、采集基因-疾病关联数据,并根据基因-疾病关联数据构建基于基因的疾病关联网络;
S3、采集疾病通路数据,并根据疾病通路数据构建基于通路的疾病关联网络;
S4、将两两疾病之间的表型疾病网络边权值、基于基因的疾病关联网络边权值和基于通路的疾病关联网络边权值按网络权重相加,将边权值之和作为复杂疾病网络的边权值,构建有向的复杂疾病网络;
S5、将复杂疾病网络中疾病分为低风险、中风险和高风险三部分,设定低风险疾病为源疾病群和高风险疾病为目标疾病群;
S6、采用双向最大平均权值路径算法搜索源疾病群到目标疾病群的疾病进展路径;
S7、计算疾病进展路径的得分,选择得分最高的疾病进展路径,得到源疾病群到目标疾病群的病情进展路径挖掘结果。
进一步地,所述步骤S1包括以下分步骤:
S1.1、采集临床诊疗数据,筛选同一患者所患的全部疾病;
S1.2、根据疾病的患病率和共病信息,获取疾病di与疾病dj的相对风险RR(di,dj)为:
其中,i=1,2,...,N,j=1,2,...,N,N表示临床诊疗数据中疾病的总数,p(dj|di)表示在患疾病di的情况下患疾病dj的概率,表示在不患疾病di的情况下患疾病dj的概率;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010971130.5/2.html,转载请声明来源钻瓜专利网。