[发明专利]一种基于动态谐波回归的超短期风电功率预测方法及系统有效
申请号: | 202010997858.5 | 申请日: | 2020-09-21 |
公开(公告)号: | CN112070320B | 公开(公告)日: | 2023-06-16 |
发明(设计)人: | 张耀;王珂;王建学;林帆;杜泽钰 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/06 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 马贵香 |
地址: | 710049 *** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 动态 谐波 回归 短期 电功率 预测 方法 系统 | ||
1.一种基于动态谐波回归的超短期风电功率预测方法,其特征在于,包括:
获取来自气象局的天气预报信息,并采集风电场不同高度的实时风速数据和风电场实时出力数据;
采用三次多项式的静态回归模型描述风电功率与风速关系,选择具有最佳预测效果的不同高度风速的组合作为最佳回归子集;使用ARIMA方法对静态回归的残差进行模拟,对残差时间序列进行稳定性分析、自相关性分析和偏自相关性分析,确定ARIMA模型三个阶数;采用交叉验证方法选择所在风电场预测效果最佳的傅里叶级数次数,得到最终的动态谐波回归模型;
根据历史实测风速数据、出力数据,使用最小二乘法进行模型剩余参数的估计;根据数值天气预报风速预测数据,采用已确定的动态谐波回归模型进行未来时刻的风电功率预测;
将实时预测数据上报上级调度中心;
所述动态谐波回归模型由式(1)获得:
式中:Pt表示t时刻风电场的发电功率,Pi(·)表示不同高度风速υi,t对风电功率的贡献且满足公式(2),ΔPt为静态回归模型的残差且满足公式(3),K表示选取的傅里叶级数次数,ak、bk分别为傅里叶项系数;
式中:υi,t为第i个高度的在时刻t的风速,βi,0、βi,1、βi,2、βi,3为系数,υi,min、υi,max分别为切入风速和切出风速;当风速小于切入风速时,风机出力为0;当风速大于切出风速时,风机出力达到额定值;
(1-φ1B-...-φpB)(1-Bd)ΔPt=c+(1+θ1B+...+θqB)εt (3)
式中:B为滞后算子且有BΔPt=ΔPt-1,c为常数,εt为ARIMA模型的残差并假设其为一组均值为0、方差为且相互独立的白噪声,p、d、q为ARIMA模型的阶数,φp、θq分别为自回归参数和滑动平均参数;
得到所述动态谐波回归模型包括如下步骤:
1)采用静态回归模型确定最佳回归子集,静态回归模型由公式(4)确定:
Pt=∑Pi(υi,t)+εt (4)
式中:Pt表示风力发电功率;Pi(·)表示不同高度风速υi,t对风电功率的贡献且满足公式(2);εt表示残差并假设其是均值为0,方差为δ2的白噪声;
待选高度的风速为风电场轮毂所在位置的风速及其附近高度的风速,将待选高度的风速进行组合,确定具有最佳预测精度的风速组合,即最佳回归子集;
2)采用动态回归模型确定ARIMA参数,动态回归模型由公式(5)确定:
Pt=∑Pi(υi,t)+ΔPt (5)
式中:Pt表示风力发电功率;Pi(·)表示不同高度风速υi,t对风电功率的贡献且满足公式(2);ΔPt为静态回归的残差序列且满足公式(3);
动态回归模型确定的ARIMA参数包括p、d、q三个超参数;使用单位根检验方法检验静态回归残差平稳性,对于不平稳残差序列,进行一次差分,并再次检验,若依然不平稳,则再进行一次差分,如此循环;经过d次差分,即得到平稳时间序列;绘制具有平稳性的残差时间序列的ACF图和PACF图,观察平稳时间序列的拖尾、截尾特性,初步确定ARIMA模型的p,q两个参数;
3)使用动态谐波回归模型确定傅里叶级数次数,动态谐波回归模型通过式(6)获得:
式中:Pt表示t时刻风电场的发电功率,Pi(·)表示不同高度风速υi,t对风电功率的贡献且满足公式(2),ΔPt为静态回归模型的残差且满足公式(3),K表示选取的傅里叶级数次数,ak、bk分别为傅里叶项系数;
K值可通过观察时间序列的频域特性进行初步判断,最后使用交叉验证确定具有最高预测精度的K值。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010997858.5/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理