[发明专利]痘痘类型识别模型训练方法及相关装置在审

专利信息
申请号: 202011004325.9 申请日: 2020-09-22
公开(公告)号: CN112183603A 公开(公告)日: 2021-01-05
发明(设计)人: 陈仿雄 申请(专利权)人: 深圳数联天下智能科技有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08;G06N20/20
代理公司: 深圳中细软知识产权代理有限公司 44528 代理人: 孔祥丹
地址: 518000 广东省深圳市南山区粤海*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 类型 识别 模型 训练 方法 相关 装置
【说明书】:

本申请公开了一种痘痘类型识别模型训练方法及相关装置。其中方法包括:获取样本数据集,所述样本数据集包括多个属于不同痘痘类型的样本图像;获取每个痘痘类型所对应的一个标准图像,所述一个标准图像用于代表一个痘痘类型的痘痘样式;计算各个所述样本图像的类别概率标签,所述类别概率标签包括所述样本图像与每个所述标准图像之间的相似度信息;基于所述各个样本图像和所述各个样本图像对应的类别概率标签训练分类网络模型,获得痘痘类型识别模型。

技术领域

发明涉及计算机视觉技术领域,尤其是涉及一种痘痘类型识别模型训练方法及相关装置。

背景技术

随着移动通信技术的快速发展以及人民生活水平的提升,各种智能终端已广泛应用于人民的日常工作和生活,使得人们越来越习惯于使用终端应用程序,使得美颜自拍、拍照测肤此类功能的APP需求也变得越来越多,对脸部痘痘情况的分析也有很大的需求,可以根据痘痘类型,针对性地提出或查询皮肤改善方案。

然而痘痘面积小,不同类别之间可区分的特征不明显,导致目前对痘痘类型识别的准确度较低。

发明内容

本申请提供了一种痘痘类型识别模型训练方法及相关装置。

第一方面,提供了一种痘痘类型识别模型训练方法,包括:

获取样本数据集,所述样本数据集包括多个属于不同痘痘类型的样本图像;

获取每个痘痘类型所对应的一个标准图像,所述一个标准图像用于代表一个痘痘类型的痘痘样式;

计算各个所述样本图像的类别概率标签,所述类别概率标签包括所述样本图像与每个所述标准图像之间的相似度概率;

基于所述各个样本图像和所述各个样本图像对应的类别概率标签训练分类网络模型,获得痘痘类型识别模型。

第二方面,提供了一种痘痘类型识别模型训练装置,包括:

获取模块,用于获取样本数据集,所述样本数据集包括多个属于不同痘痘类型的样本图像;

所述获取模块还用于,获取每个痘痘类型所对应的一个标准图像,所述一个标准图像用于代表一个痘痘类型的痘痘样式;

计算模块,用于计算各个所述样本图像的类别概率标签,所述类别概率标签包括所述样本图像与每个所述标准图像之间的相似度信息;

训练模块,用于基于所述各个样本图像和所述各个样本图像对应的类别概率标签训练分类网络模型,获得痘痘类型识别模型。

第三方面,提供了一种计算机存储介质,所述计算机存储介质存储有一条或多条指令,所述一条或多条指令适于由处理器加载并执行如上述第一方面及其任一种可能的实现方式的步骤。

本申请实施例通过获取样本数据集,上述样本数据集包括多个属于不同痘痘类型的样本图像,获取每个痘痘类型所对应的一个标准图像,上述一个标准图像用于代表一个痘痘类型的痘痘样式,计算各个上述样本图像的类别概率标签,上述类别概率标签包括上述样本图像与每个上述标准图像之间的相似度信息,再基于上述各个样本图像和上述各个样本图像对应的类别概率标签训练分类网络模型,获得痘痘类型识别模型,可以对痘痘类型进行较准确识别。传统的分类标签方式,分类的准确度不高,而本申请中在模型训练时采用样本图像与每个所述标准图像之间的相似度信息进行标注,可以从标签上体现出类别之间的相似程度,将痘痘类型标签概率化,使得模型能够学习痘痘类型之间的相似特征,从而提升痘痘类型识别的准确度。

附图说明

为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。

图1为本申请实施例提供的一种痘痘类型识别模型训练方法的流程示意图;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳数联天下智能科技有限公司,未经深圳数联天下智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011004325.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top