[发明专利]模型训练方法、杯盘比确定方法、装置、设备及存储介质在审

专利信息
申请号: 202011005659.8 申请日: 2020-09-22
公开(公告)号: CN112132265A 公开(公告)日: 2020-12-25
发明(设计)人: 李葛;成冠举;曾婵;高鹏;谢国彤 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06T11/00;G06T7/11;G06T7/00
代理公司: 深圳市力道知识产权代理事务所(普通合伙) 44507 代理人: 张传义
地址: 518000 广东省深圳市福田区福*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 模型 训练 方法 确定 装置 设备 存储 介质
【说明书】:

本申请涉及人工智能领域,具体使用了神经网络,并公开了一种视杯视盘分割模型训练方法、基于神经网络的杯盘比确定方法、装置、设备及存储介质,所述视杯视盘分割模型训练方法包括:获取样本图像和所述样本图像对应的图像标签,以构建样本数据;将所述样本数据输入预设的神经网络,以得到预测的视杯视盘分割图像;对所述图像标签和预测的视杯视盘分割图像分别进行投影,以得到所述图像标签对应的标签投影值和所述预测的视杯视盘分割图像的图像投影值;分别计算分割损失函数的数值和投影损失函数的数值,以得到网络损失函数的数值;根据所述网络损失函数的数值对所述预设的神经网络进行训练,以得到视杯视盘分割模型。本申请适用于智慧医疗领域。

技术领域

本申请涉及图像处理领域,尤其涉及一种视杯视盘分割模型训练方法、基于神经网络的杯盘比确定方法、装置、设备及存储介质。

背景技术

青光眼是一种全球三大致盲的眼科疾病之一,其不可逆性导致它的早期诊断和治疗对于提高患者的生活质量有至关重要的作用。在对青光眼进行自动筛查时,通常使用杯盘比作为评估指标,采用分割方法对眼底图像中的视杯和视盘进行分割,然后计算杯盘比。但现有的视盘分割方法通常是像素级别的分割方法,对每个像素分别进行判断,未考虑视杯视盘的全局表达,容易导致计算出的杯盘比的误差较大,准确度较低,产生多筛或漏筛的情况。

因此,如何提高分割得到的视杯视盘图像的准确度,减少疾病筛查过程中的多筛、漏筛情况成为亟待解决的问题。

发明内容

本申请提供了一种视杯视盘分割模型训练方法、基于神经网络的杯盘比确定方法、装置、设备及存储介质,以提高分割得到的视杯视盘图像的准确度,减少疾病筛查过程中的多筛、漏筛情况。

第一方面,本申请提供了一种视杯视盘分割模型训练方法,所述方法包括:

获取样本图像和所述样本图像对应的图像标签,以根据所述样本图像和所述样本图像对应的图像标签构建样本数据;将所述样本数据输入预设的神经网络,以得到预测的视杯视盘分割图像;对所述图像标签和预测的视杯视盘分割图像分别进行投影,以得到所述图像标签对应的标签投影值和所述预测的视杯视盘分割图像的图像投影值;分别计算分割损失函数的数值和投影损失函数的数值,以得到网络损失函数的数值,其中,所述分割损失函数用于计算所述预测的视杯视盘分割图像和对应的图像标签之间的损失,所述投影损失函数用于计算所述标签投影值和所述图像投影值之间的损失;根据所述网络损失函数的数值对所述预设的神经网络进行训练,以得到视杯视盘分割模型。

第二方面,本申请还提供了一种基于神经网络的杯盘比确定方法,所述方法包括:

获取眼底图像,并对所述眼底图像进行视盘区域检测,以得到视盘区域;将所述视盘区域输入预先训练的视杯视盘分割模型,得到视杯视盘分割图像,所述视杯视盘分割模型为采用第一方面所述的视杯视盘分割模型训练方法训练得到的模型;基于所述视杯视盘分割图像确定杯盘比。

第三方面,本申请还提供了一种视杯视盘分割模型训练装置,所述装置包括:

样本构建模块,用于获取样本图像和所述样本图像对应的图像标签,以根据所述样本图像和所述样本图像对应的图像标签构建样本数据;图像预测模块,用于将所述样本数据输入预设的神经网络,以得到预测的视杯视盘分割图像;图像投影模块,用于对所述图像标签和预测的视杯视盘分割图像分别进行投影,以得到所述图像标签对应的标签投影值和所述预测的视杯视盘分割图像的图像投影值;损失计算模块,用于分别计算分割损失函数的数值和投影损失函数的数值,以得到网络损失函数的数值,其中,所述分割损失函数用于计算所述预测的视杯视盘分割图像和对应的图像标签之间的损失,所述投影损失函数用于计算所述标签投影值和所述图像投影值之间的损失;模型训练模块,用于根据所述网络损失函数的数值对所述预设的神经网络进行训练,以得到视杯视盘分割模型。

第四方面,本申请还提供了一种基于神经网络的杯盘比确定装置,所述装置包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011005659.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top