[发明专利]一种基于肢端动作信号的癫痫发作状态识别方法有效

专利信息
申请号: 202011045401.0 申请日: 2020-09-29
公开(公告)号: CN112043261B 公开(公告)日: 2023-09-22
发明(设计)人: 金显吉;梁廷伟;吴字宇;代红伟 申请(专利权)人: 黑龙江吉远健康科技有限公司
主分类号: A61B5/318 分类号: A61B5/318;A61B5/0533;A61B5/11
代理公司: 哈尔滨市阳光惠远知识产权代理有限公司 23211 代理人: 张宏威
地址: 150028 黑龙江省哈尔滨市高新技术产业开发*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 动作 信号 癫痫 发作 状态 识别 方法
【说明书】:

发明是一种基于肢端动作信号的癫痫发作状态识别方法。本发明涉及癫痫信号检测识别技术领域,根据采集的多维度肢端动作信号,进行数据划分;将得到的数据进行消除零漂、平滑滤波、合成加速度等数据预处理;对所述信号进行特征提取和特征选择,得到多参数的特征数据集;依据相关原则,划分训练集和测试集,得到统一格式的训练学习数据;运用支持向量机算法进行机器学习,通过自动网格搜寻法进行超参数调节,确定优化后的超参数水平组合;还原边界决策函数,以便在线快速识别癫痫发作状态。本发明使用支持向量机算法对数据进行机器学习,可以快速有效地识别出癫痫发作状态,提高癫痫识别的准确度。

技术领域

本发明涉及癫痫信号检测识别技术领域,是一种基于肢端动作信号的癫痫发作状态识别方法。

背景技术

癫痫(Epilepsy)是一种由多种病因引起的,由于大脑神经元阵发性异常放电而导致功能性障碍的慢性神经系统疾病,其临床表现为突发意识丧失、昏厥、四肢抽搐等,并且在认知与精神上产生障碍,严重损害患者的身心健康,甚至危及生命。对于癫痫患者来说,癫痫的发作时间通常无法预知,导致发作后护理介入不及时,不仅可能引发人身安全风险,而且给患者带来了很大的心理压力。如果患者的癫痫发作在第一时间被发现,能够即时得到医护人员处理,就可以避免进一步发展为死亡率更高的癫痫持续状态,对减少癫痫发作导致的人身伤害、提高患者生活质量具有积极意义。

癫痫是一种以反复发作为特征的慢性脑功能障碍综合症,我国约有800万人受到癫痫疾病的困扰,是世界第二大常见的破坏性神经系统疾病。癫痫病发作具有突然、快速、持续时间短的特点,快速有效的癫痫发作识别可以及时提示医护人员对病人进行有效治疗。如今医生对癫痫病的诊断仍是通过观察脑电信号的特征波来进行分析,耗费精力大、临床效率低,而且脑电信号的采集也有一定的空间要求和繁复性要求。因此基于肢端动作信号的癫痫发作快速识别,对于癫痫病人的看护具有重大现实意义。

发明内容

本发明为实现对癫痫信号快速识别,本发明提供了一种基于肢端动作信号的癫痫发作状态识别方法,本发明提供了以下技术方案:

一种基于肢端动作信号的癫痫发作状态识别方法,包括以下步骤:

步骤1:根据采集到的多维度肢端动作信号,对多维度肢端动作信号进行数据划分,得到发病数据片段和正常数据,正常数据划分出干扰片段和平稳片段各占比50%,所述多维度肢端动作信号包括三轴加速度信号、心电信号、皮电信号和体温信号;

步骤2:根据发病数据片段和正常数据,进行预处理,得到预处理后的数据;

步骤3:根据预处理后的数据,进行特征提取和特征选择,确定各特征效果,得到多参数的特征数据集;

步骤4:根据多参数的特征数据集,划分训练集和测试集,得到统一格式的训练学习数据;

步骤5:基于训练学习数据,采用支持向量机算法进行机器学习,通过自动网格搜寻法进行超参数调节,确定优化后的超参数水平组合;

步骤6:确定优化后的超参数水平组合是否符合优化需求,若符合优化需求则停止优化,若不符合则返回步骤4调整特征集的特征重新进行机器学习;

步骤7:当优化后的超参数水平组合符合优化需求后,还原处决策函数,识别癫痫发作状态。

优选地,步骤2中对发病数据片段和正常数据进行预处理具体为:

步骤2.1:对发病数据片段和正常数据进行阈值过滤,去除小振动干扰,阈值由数据统计分析选取0.05;

步骤2.2:对发病数据和正常数据进行相邻点5点中值滤波,消除椒盐噪声;

步骤2.3:对三轴加速度数据进行加速度合成,通过下式表示合成后的加速度A:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黑龙江吉远健康科技有限公司,未经黑龙江吉远健康科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011045401.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top