[发明专利]一种基于深度学习相位更加友好的语音降噪系统及方法有效

专利信息
申请号: 202011063354.2 申请日: 2020-09-30
公开(公告)号: CN112652321B 公开(公告)日: 2023-05-02
发明(设计)人: 李培硕;欧阳鹏;尹首一 申请(专利权)人: 北京清微智能科技有限公司
主分类号: G10L21/0216 分类号: G10L21/0216;G10L21/0232;G10L25/30
代理公司: 北京索睿邦知识产权代理有限公司 11679 代理人: 李根
地址: 100192 北京市海*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 相位 更加 友好 语音 系统 方法
【说明书】:

发明公开一种基于深度学习相位更加友好的语音降噪系统,属于基于深度学习的语音增强技术领域。包括:一个生成器和一个判别器。在对抗式训练中,将作为频域发生器的深度神经网络产生的估计的傅里叶频谱,用带噪语音相位的短时傅立叶反变换变换成估计波形,并利用时域鉴别器进行判断。在前向过程中,语音降噪系统仍然使用带噪声语音的相位作为处理后的语音频谱的相位,但语音降噪系统系统已经被训练得更适应带噪语音相位。本发明解决了现有技术中基于频谱降噪系统中相位不匹配的情况下,寻找处理后的频谱的幅值对应的相位比较耗时且直接用噪声相位会因为相位不匹配而导致的降噪效果不好的问题。

技术领域

本发明属于基于深度学习的语音增强技术领域,尤其涉及一种基于深度学习相位更加友好的语音降噪系统及方法。

背景技术

语音增强是一种非常重要的语音处理方法,它可以通过去除噪音,从带噪语音中获得去噪后的语音。除了谱减法和维纳滤波等传统算法外,基于神经网络的方法由于其复杂的非线性网络能够有效降低非平稳噪声而日益流行。大多数基于神经网络的方法是使用基于傅里叶频谱的频域系统,而不是原始波形(时域)。

这些方法通过短时傅里叶变换(STFT)将输入的带噪语音波形转换成对应语音的傅里叶频谱,通过时频掩模对幅值谱进行修改,并通过短时傅里叶反变换(ISTFT)将增强后的频谱转换回对应的时域波形。在整个前馈过程中,之前的方案保持有噪声的相位谱不变。进一步的研究表明,通过修改相位谱,语音增强性能可以大大提高。但在实时频域语音增强中,精确的相位谱往往需要很长时间才能找到,这使得相位不匹配问题一直没有得到很好的解决。

发明内容

本发明的目的是提供一种基于深度学习相位更加友好的语音降噪系统及方法,以解决现有技术中找到精确的相位谱比较耗时,使得相位不匹配的问题。

为了实现上述目的,本发明提供如下技术方案:

一种基于深度学习相位更加友好的语音降噪系统,包括:

一个对抗网络,其包括一个生成器和一个判别器;

训练所述生成器,其能够接收短时傅里叶变换转换来的带噪语音幅度谱,所述生成器能够将带噪语音幅度谱转换为时频掩膜;

所述生成器通过神经网络估产生估计傅里叶频谱,通过带噪语音相位的短时傅立叶反变换将所述估计傅里叶频谱转变为估计波形;

训练所述判别器,其与所述生成器能够训练平衡;所述生成器和所述判别器之间使用短时傅立叶反变换做从频域转到时域的转换;

所述对抗网络能够接收一个真数据和一个假数据对;所述真数据对是干净语音波形和噪声语音波形的拼接,所述假数据对是降噪后语音波形和带噪语音波形的拼接;对于所述真数据对,所述判别器输出为1,对于所述假数据对,所述判别器输出为0;

所述生成器的前向过程中使用带噪声语音的相位作为处理后的语音频谱的相位;

在相同的频谱图的幅值的情况下,Griffin-Lim算法无限迭代即时间代价很大的情况下,Griffin-Lim算法能够得到最高分;所述Griffin-Lim算法在客观可理解度所得分数和语音质量知觉评价所能够获得最高分;

通过ISTFT算法和Griffin-Lim算法比较所述语音降噪系统的客观可理解度所得分数和语音质量知觉评价所得分数;同一频谱图经过两个算法得到分数的差值,表示相位对语音降噪系统的影响;所述分数的差值越小代表Griffin-Lim算法对相位失配的补偿越多,效果越好。

本发明还可以做如下改进:

进一步地,所述生成器包括一个七层卷积网络、一层长短时记忆网络、一个第一层全连接神经网络和一个第二层全连接神经网络;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京清微智能科技有限公司,未经北京清微智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011063354.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top