[发明专利]一种面向视频常规评论的情感不稳定用户检测方法有效

专利信息
申请号: 202011081658.1 申请日: 2020-10-12
公开(公告)号: CN112214661B 公开(公告)日: 2022-04-08
发明(设计)人: 杜亚军;李若淼;赵飞宇 申请(专利权)人: 西华大学
主分类号: G06F16/951 分类号: G06F16/951;G06F16/9535;G06N3/04;G06N3/08
代理公司: 成都方圆聿联专利代理事务所(普通合伙) 51241 代理人: 苟铭
地址: 610039 四*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 面向 视频 常规 评论 情感 不稳定 用户 检测 方法
【权利要求书】:

1.一种面向视频常规评论的情感不稳定用户检测方法,其特征在于,包括以下步骤:

步骤1,从网站中收集常规评论数据,从原始数据中筛选出常规评论文本、用户信息与评论时间;

步骤2,实现数据的格式化处理,组成常规评论集合;常规评论集合GCs(GeneralComments),GCs={GC1,GC2,…,GCn},其中GCi表示第i条常规评论文本,共计n条常规评论文本;每一条常规评论文本都有用户信息Userinfo和评论信息Commentinfo两个属性,其中Userinfo={Ui1,Ui2,…,Uin},Commentinfo={Ci1Ci2,…,Cin},用户信息包含用户ID内容,评论信息包含评论时间和评论交互信息内容,等价表示为GCi(Uii,Cii),i=1,2,...,n;

步骤3,汇总网站预置表情包并构建表情对照表,使用FastText方法结合表情对照表的方法测量常规评论的情感倾向,实现常规评论的情感分析;

步骤4,根据评论信息中的评论交互信息,分析用户评论交互中的两级评论结构,确定用户之间的关系,对应评论交互网络的节点与节点之间的边;评论的情感倾向确定评论交互中用户之间的赞成或反对,对应评论交互网络邻接矩阵的元素,有效地表示节点间的详细关系;再根据评论信息中的评论时间,分析常规评论的生成规律,划分不同的评论时间段,构建时序评论交互网络;

步骤5,通过网络表示学习分析时序评论交互网络,得到用户与用户之间的时序关系;根据时序的用户间关系,判断用户是否符合情感不稳定用户的定义,从而检测出情感不稳定的用户。

2.根据权利要求1所述的一种面向视频常规评论的情感不稳定用户检测方法,其特征在于:步骤2中数据的格式化具体如下:

统计分析常规评论数据特性,根据评论性质将常规评论分为主评论、一级评论、二级评论;

主评论对应的用户为层主节点;一级评论,是直接跟层主节点进行交互的评论;二级评论并不是直接与层主节点进行互动,且回复的评论是一级评论,

评论交互信息包含属性元组root,parent,该属性元组中两个字段的数值确定评论对应的级别,对应规则如公式(1);root(根节点)和parent(父节点)都为空值,则为层主评论;root和parent都不为空值,并且root和parent数值相等,则为一级评论;root和parent都不为空值,并且root和parent数值不相等,则为二级评论;

根据一级评论和二级评论定义,进行数据格式化:设定两个集合,一个是评论用户的集合Ni,另一个是用户之间连接情况的集合Ri,GCs={GC1,GC2,…,GCn}表示n条常规评论的集合;初始化Ni和Ri,即设置两个集合为空集;遍历常规评论集合中的所有评论数据,判断评论的属性元组root,parent的字段是否为空值,确定层主评论并将对应的用户添加到Ni,将其相关条目从评论集合中删除;再遍历评论集合剩余的评论数据,判断评论的属性元组root,parent的字段数值是否一致,确定一级评论和二级评论,将对应的用户添加到Ni,同时将交互的用户添加到Ri,最终得到Ni和Ri,以此确定评论交互网络中的节点和节点间的连接关系。

3.根据权利要求1所述的一种面向视频常规评论的情感不稳定用户检测方法,其特征在于:步骤3中常规评论情感分析具体如下:

首先从视频网站收集网站预置的表情包,将表情包与对应的文字描述汇总,构建表情对照表,利用表情对照表将常规评论数据中的表情转换为文字;再根据表情对照表对标注的常规评论进行预处理,通过FastText训练情感倾向分类模型;最后根据表情对照表预处理待分析的常规评论,通过情感倾向分类模型预测待分析的常规评论情感倾向。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西华大学,未经西华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011081658.1/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top