[发明专利]医学图像的加窗方法及装置有效

专利信息
申请号: 202011104293.X 申请日: 2020-10-15
公开(公告)号: CN112233126B 公开(公告)日: 2021-09-17
发明(设计)人: 亢寒;张荣国;李新阳;王少康;陈宽 申请(专利权)人: 推想医疗科技股份有限公司
主分类号: G06T7/11 分类号: G06T7/11;G06T7/62;G06T7/00;G06N3/08;G06N3/02
代理公司: 北京布瑞知识产权代理有限公司 11505 代理人: 秦卫中
地址: 100085 北京市海淀*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 医学 图像 方法 装置
【权利要求书】:

1.一种医学图像的加窗方法,其特征在于,包括:

分别获取待加窗处理的多个医学图像中的每个医学图像中的感兴趣区域的第一X线计算机断层摄影CT值和第二CT值;

将多个第一CT值从小到大排列,选取所述多个第一CT值中排序在第一预设分位数的位置处的第一CT值作为加窗处理的窗口的第一参数值;

将多个第二CT值从小到大排列,选取所述多个第二CT值中排序在第二预设分位数的位置处的第二CT值作为加窗处理的窗口的第二参数值;

根据所述窗口的第一参数值和第二参数值,对所述多个医学图像进行加窗处理;

其中,所述第一CT值为所述多个医学图像中的每个医学图像中的感兴趣区域的最大CT值;所述第二CT值为所述多个医学图像中的每个医学图像中的感兴趣区域的最小CT值;所述第一参数值为加窗处理的窗口的最大值;所述第二参数值为加窗处理的窗口的最小值。

2.根据权利要求1所述的方法,其特征在于,所述多个医学图像为神经网络模型的正样本训练集中的多个正样本,所述神经网络模型包括二值化分割网络模型,所述方法还包括:

从样本集中获取所述正样本训练集和负样本训练集,其中,所述正样本训练集中的每个正样本为具有感兴趣区域的图像,所述负样本训练集中的每个负样本为不具有感兴趣区域的图像,

其中,所述根据所述窗口的第一参数值和第二参数值,对所述多个医学图像进行加窗处理,包括:

根据所述窗口的第一参数值和第二参数值,分别对所述正样本训练集中的每个正样本和所述负样本训练集中的每个负样本进行加窗处理,

其中,所述方法还包括:

利用经过加窗处理的正样本训练集和负样本训练集对所述神经网络模型进行训练。

3.根据权利要求2所述的方法,其特征在于,所述利用经过加窗处理的正样本训练集和负样本训练集对所述神经网络模型进行训练,包括:

根据批尺寸参数,分别从所述正样本训练集中获取i个正样本,其中,i为大于等于1的整数;

根据所述批尺寸参数和所述i个正样本的数量,分别从所述负样本训练集中获取j个负样本;

根据每个由所述i个正样本和所述j个负样本组成的小批量样本集对所述神经网络模型进行训练。

4.根据权利要求3所述的方法,其特征在于,所述根据每个由所述i个正样本和所述j个负样本组成的小批量样本集对所述神经网络模型进行训练,包括:

将所述小批量样本集作为一个整体,获得所述小批量样本集对应的一个损失函数值,

根据所述损失函数值对所述神经网络模型进行训练。

5.根据权利要求2所述的方法,其特征在于,所述正样本训练集由所述样本集中的所有正样本组成,所述负样本训练集通过以下任一方法得到:

利用所述正样本训练集训练得到的神经网络对所述样本集中的所有负样本进行测试,分别获得难学负样本和简单负样本,根据所述难学负样本和所述简单负样本的比例,从所述样本集中获得所述负样本训练集;或者

当所述样本集中的负样本数量少于所述正样本训练集的正样本数量时,将所述样本集中的所有负样本作为所述负样本训练集;或者

当所述样本集中的负样本数量与所述正样本训练集的正样本数量相等时,将所述样本集中的所有负样本作为所述负样本训练集;或者

当所述样本集中的负样本数量多于所述正样本训练集的正样本数量,且所述负样本数量与所述正样本训练集的正样本数量之比小于第一预设比例时,将所述样本集中的所有负样本作为所述负样本训练集;或者

当所述样本集中的负样本数量多于所述正样本训练集的正样本数量,且所述负样本数量与所述正样本训练集的正样本数量之比大于等于第二预设比例时,从所述样本集中的所有负样本中随机或者等间隔地选取第三预设比例的负样本作为所述负样本训练集。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于推想医疗科技股份有限公司,未经推想医疗科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011104293.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top