[发明专利]基于长短时神经网络与自动编码机的风电齿轮箱状态监测方法有效

专利信息
申请号: 202011106893.X 申请日: 2020-10-16
公开(公告)号: CN112461537B 公开(公告)日: 2022-06-17
发明(设计)人: 傅雷;朱添田 申请(专利权)人: 浙江工业大学
主分类号: G01M13/021 分类号: G01M13/021;G06N3/04;G06N3/08
代理公司: 杭州斯可睿专利事务所有限公司 33241 代理人: 王利强
地址: 310014 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 长短 神经网络 自动 编码 齿轮箱 状态 监测 方法
【权利要求书】:

1.一种基于长短时神经网络自动编码机的风电齿轮箱状态监测方法,其特征在于,所述方法包括以下步骤:

步骤1)对于风电齿轮箱原始高维时序数据D={N*F},其中,N是样本数量,F是样本维度;采用滑动窗口对样本进行划分,得到I个新样本,其中窗口宽度设定为L,窗口滑动步长设定为s,得到分割后的数据集D’={I*N*F};

其中,对于基于滑动窗口的时序数据样本划分方法,窗口宽度设定值L至关重要,窗口宽度较大时,可以较好挖掘数据集样本内在的时序依赖关系,但是与此同时会降低自编码器模型对异常故障的敏感性;窗口宽度较小时,异常故障可以被有效分离,但是会破坏原始样本中时序数据的依赖关系,从而导致自编码器模型难以有效学习到风电齿轮箱健康工况的数据特征和运行状态;

步骤2)考虑到风电齿轮箱多信息融合传感器的量化尺度存在较大差异,采用线性变换对数据进行标准化处理,得到归一化后的高维时序数据,基于min-max归一化方法进行处理,如式(1)所示:

其中,Y’为归一化后的数据集,Y为原始数据集,是数据集的平均值,max(Y)是数据集的最大值,min(Y)是数据集的最小值;

步骤3)引入双向长短时神经网络自动编码机对样本进行特征提取和样本重构,针对风电齿轮箱多信息传感数据的时序特性,自动编码机采用LSTM作为编码器和解码器,在得到归一化的样本数据集后,采用自编码器将模型的学习目标设置为数据集样本自身,同时将原始样本集合重映射到低维样本特征空间从而学习原始样本的关键特征,以此实现数据样本的降维、特征提取与筛选,其中,选取将原始数据样本映射到低维特征空间的模块作为模型的编码器,选取提取筛选后的特征重构样本的模块作为模型的解码器;

该神经网络包括编码器和解码器两部分,其中,编码器和解码器均融合了双向长短时神经网络,RepeatVector层和Dense全连接层是为了使重建样本与原样本具有同样的维度,其中,RepeatVector层的原理是将输入重复若干次后输出;

步骤4)风电齿轮箱异常状态监测和辨识,在对风电齿轮箱原始数据样本编码降维提取得到筛选特征与解码重构样本的过程中,双向长短时神经网络自动编码机模型会产生误差;因此,在神经网络训练阶段,向自动编码机中输入正常数据,通过迭代减小重构序列和原始序列的均方根误差来学习风电齿轮箱健康工况下样本序列的关键特征和模式;基于上述前提,在使用自编码器模型进行测试时,齿轮箱健康工况序列样本的重构误差较小,而故障工况下序列样本的重构误差较大,因此选用该误差作为对风电齿轮箱异常状态监测的指标系数;

所述步骤3)中,双向长短时神经网络自动编码机中,网络由两个独立的长短时神经网络组成,且具有两个结构一致但方向相反的隐藏层;第一层长短时神经网络用以计算样本当前时刻的正向节点信息,第二次层长短时神经网络用以计算样本当前时刻的反向节点信息,两个隐藏层单独计算当前时刻的节点状态和输出信息,同时向前反馈到相同的输出层;在训练时,由于两个网络无互相作用,因此可以作为一个通用的前馈网络,其反向传播过程也与长短时神经网络类似,唯一的不同是传播到输出层后,返回给两个隐藏层以不同的方向传播,完成对权重的更新。

2.如权利要求1所述的基于长短时神经网络自动编码机的风电齿轮箱状态监测方法,其特征在于,所述步骤4)中,风电齿轮箱异常状态监测和辨识算法的过程为:对于经过分割的风电齿轮箱原始序列数据样本,可以用一个L*F大小的矩阵进行标识,同理,经过重构的风电齿轮箱序列数据样本矩阵尺度也为L*F,当滑动窗口宽度较大时,滑动窗口中的样本数据会包含多个时间点数据,因此选取本中心时刻的状态标签作为该窗口下时间样本的状态标签;而后,选取该滑动窗口下中心时刻的风电齿轮箱原始序列和重构序列作为目标样本,计算其对应的均方根误差作为风电齿轮箱异常状态监测的指标系数;若计算得到的风电齿轮箱异常状态监测的指标系数超过给定的失效阈值,则判定风电齿轮箱出现故障。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011106893.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top