[发明专利]一种基于车联网的道路图像检测方法在审
申请号: | 202011147626.7 | 申请日: | 2020-10-23 |
公开(公告)号: | CN112288702A | 公开(公告)日: | 2021-01-29 |
发明(设计)人: | 刘晨;陈晨 | 申请(专利权)人: | 西安科锐盛创新科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/46;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 西安嘉思特知识产权代理事务所(普通合伙) 61230 | 代理人: | 王海栋 |
地址: | 710065 陕西省西安市高新区高新路86号*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 联网 道路 图像 检测 方法 | ||
1.一种基于车联网的道路图像检测方法,其特征在于,包括:
获取待检测的目标道路图像;
将所述目标道路图像输入预先训练得到的道路图像检测网络中,利用主干网络进行特征提取,得到x个不同尺度的特征图;x为大于等于4的自然数;
将所述x个不同尺度的特征图利用FPN网络进行特征融合,得到各尺度对应的预测结果;
将所有预测结果经由分类网络和非极大值抑制模块进行处理,得到所述目标道路图像的检测结果,所述检测结果包括目标的位置和类别;
在车载设备上显示所述检测结果。
其中,所述道路图像检测网络包括顺次连接的主干网络、FPN网络、分类网络和非极大值抑制模块;所述道路图像检测网络是根据样本道路图像,以及所述样本道路图像对应目标的位置和类别训练得到的。
2.根据权利要求1所述的方法,其特征在于,所述道路图像检测网络的主干网络包括:串接的y个残差模块;y为大于等于4的自然数;y大于等于x;
所述利用主干网络进行特征提取,得到x个不同尺度的特征图,包括:
利用串接的y个残差模块对所述目标道路图像进行特征提取,得到沿输入逆向的x个残差模块输出的、尺度依次增大的x个特征图。
3.根据权利要求2所述的方法,其特征在于,所述FPN网络包括尺度依次增大的x个预测支路Y1~Yx;其中,所述预测支路Y1~Yx的尺度与所述x个特征图的尺度一一对应;
所述将所述x个不同尺度的特征图利用FPN网络进行特征融合,包括:
预测支路Yi从所述x个特征图中,获取对应尺度的特征图作为所述预测支路Yi的待融合特征图Fi;其中,i=2、3,…,x;
并且获取预测支路Yi-1中经卷积网络模块组输出的特征图,并进行卷积和上采样处理,得到所述预测支路Yi的待融合特征图Fi-1;
将所述待融合特征图Fi和所述待融合特征图Fi-1进行级联融合;
其中,所述卷积网络模块组包括k个卷积网络模块,k为自然数;所述卷积网络模块包括串行连接的卷积层、BN层、Leaky relu层;每一预测支路均含有所述卷积网络模块组,预测支路Yi的所述卷积网络模块组设置于该预测支路的级联融合处理之后。
4.根据权利要求2所述的方法,其特征在于,所述FPN网络包括尺度依次增大的x个预测支路Y1~Yx;其中,所述预测支路Y1~Yx的尺度与所述x个特征图的尺度一一对应;
所述将所述x个不同尺度的特征图利用FPN网络进行特征融合,包括:
改进所述FPN网络,得到改进型FPN网络;
采用自顶向下、密集连接的方式将所述x个不同尺度的特征图进行特征融合。
5.根据权利要求4所述的方法,其特征在于,所述采用自顶向下、密集连接的方式将所述x个不同尺度的特征图进行特征融合,包括:
针对预测支路Yi,从所述x个特征图中,获取对应尺度的特征图并进行卷积处理,将卷积处理后的特征图,与预测支路Yi-1~Y1分别经上采样处理后的特征图进行级联融合;其中,预测支路Yi-j的上采样倍数为2j;i=2、3,…,x;j为小于i的自然数。
6.根据权利要求1所述的方法,其特征在于,对所述道路图像检测网络进行训练之前还包括:
确定针对样本道路图像中锚盒尺寸的待聚类数量;
获取已标注目标框尺寸的若干样本道路图像;
基于已标注目标框尺寸的若干样本道路图像,利用K-Means聚类方法,获得样本道路图像中锚盒尺寸的聚类结果;
将所述聚类结果写入所述道路图像检测网络的配置文件中。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安科锐盛创新科技有限公司,未经西安科锐盛创新科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011147626.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种智慧交通图像检测方法
- 下一篇:一种桃树种植栽培方法及种植装置
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序