[发明专利]一种基于多分类支持向量数据描述的旋转机械故障诊断方法有效

专利信息
申请号: 202011167393.7 申请日: 2020-10-28
公开(公告)号: CN112461543B 公开(公告)日: 2022-09-13
发明(设计)人: 纪洪泉;张玉敏 申请(专利权)人: 山东科技大学
主分类号: G01M13/028 分类号: G01M13/028;G01M13/021
代理公司: 青岛智地领创专利代理有限公司 37252 代理人: 肖峰
地址: 266590 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 分类 支持 向量 数据 描述 旋转 机械 故障诊断 方法
【权利要求书】:

1.一种基于多分类支持向量数据描述的旋转机械故障诊断方法,其特征在于,包括离线建模阶段和在线诊断阶段;其中,

一、离线建模阶段

步骤1:分别采集旋转机械正常以及不同齿轮故障类型下的一段传感器测量数据作为训练数据集;

步骤2:通过经验公式对训练数据进行时域和频域的特征提取,获取用于旋转机械故障诊断的常用特征参数,组成特征参数矩阵;

步骤3:根据核空间中样本间余弦相似度均值和方差进行特征选择,将所选择的特征参数组成特征参数子集,同时确定高斯径向基函数的宽度参数;具体过程为:

特征选择包括子集搜索和评价两个部分,通过利用高斯径向基函数GBRF在核空间中的余弦相似度是否有利于分类,来判断特征子集的有效性;余弦相似度是用两个向量之间夹角的余弦值衡量它们之间差异的度量,在核空间中表示为:

其中,x和z代表两个样本向量,θ代表二者在核空间中的夹角;为映射函数,将有限维空间中的点映射到高维特征空间中;根据Mercer定理,提出各种核函数,其中GBRF应用十分广泛:

其中,σ为宽度参数,控制了函数的径向作用范围;根据GBRF公式,任一样本在核空间中与自身之间的核函数值为1,即κ(x,x,σ)=1;且两个样本之间的夹角在核空间中的余弦值等于它们的核函数值,即:

通过两个样本之间的夹角来衡量它们之间的余弦相似性,夹角越小则核函数的值越大,两个样本也就越相似;反之,夹角越大则核函数的值越小;基于核空间中余弦相似度的进行特征选择需要满足以下两点:来自同一类别样本的GBRF值较大;来自不同类别样本的GBRF值较小;定义余弦相似度度量矩阵如下:

其中,的上标表示样本属于第i类,下标表示第i类样本的数量;

定义类内余弦相似度均值为:

其中,L代表样本类别的数量,AVG表示求取矩阵中所有非零元素的均值;当同一类别中的样本足够相似时,Wm的值是接近于1的;定义类间余弦相似度均值为:

余弦相似度的方差反映更多数据分布的细节特点;通过将余弦相似度均值和方差结合起来,得到更全面的、同时涵盖整体和细节的描述;在此引入核空间中类内余弦相似度方差的概念:

其中,表示第i类余弦度量矩阵内所有元素的均值,VAR表示求取各个类的方差的均值;通过特征选择后,同一类别的样本之间凝聚度进一步增大,不同类别之间的样本差异度增大;定义类别可分性目标函数:

其中,ω是权重向量,且ωWBV=1;在进行特征选择时,目标函数值越小,则同类样本越相似,不同类的样本差别越大;在子集搜索环节,后向搜索是从完整的特征集合中,每次尝试去掉一个无关特征,逐渐减少特征参数;根据后向搜索策略,定义单个特征参数的敏感性系数为:

λi=J-Ji i=1,2,...,s (9)

其中,J表示用包含所有特征参数的特征矩阵Q计算得到的目标函数值,Ji表示用删掉第i个特征参数的特征矩阵计算得到的目标函数值,s表示特征参数的个数;敏感性系数的值越大,则对应的特征参数越不利于样本的分类,即该特征参数被舍弃时,同类样本之间相似度更高,不同类别的样本相似度低;定义如下特征选择的准则:

其中,表示所有敏感性系数的均值;将所有符合上述准则的敏感性系数所对应的特征参数舍弃,余下的特征参数共同组成特征子集P;

根据网格搜索的思想,首先确定宽度参数σ的大致范围,然后逐步增大σ的值,重复进行上述特征参数选择的步骤,计算目标函数的最小值,得到最小的目标函数所对应的宽度参数以及特征参数子集并保存,留作在线诊断阶段使用;

步骤4:建立步骤3所构造的数据矩阵的支持向量数据描述模型,计算各个故障类别超球体的球心和半径并保存,留作在线诊断阶段用;

二、在线诊断阶段

步骤5:采集旋转机械实时工况下不同齿轮故障类别的传感器测量数据作为测试数据;

步骤6:根据步骤3中所选择的特征参数构建测试数据的特征参数子集,计算特征参数子集中的样本与球心之间的距离;

步骤7:将步骤6所得距离与步骤4中的半径进行对比,判断测试数据是属于正常状态还是某种故障状态,最终得到故障分类及诊断结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东科技大学,未经山东科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011167393.7/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top