[发明专利]一种基于生成对抗网络的病态人脸数据增强方法有效
申请号: | 202011173820.2 | 申请日: | 2020-10-28 |
公开(公告)号: | CN112233017B | 公开(公告)日: | 2023-09-26 |
发明(设计)人: | 陈雷;胡金雨;袁媛 | 申请(专利权)人: | 中国科学院合肥物质科学研究院 |
主分类号: | G06T3/00 | 分类号: | G06T3/00;G06T5/40;G06T5/50;G06V40/16;G06V10/774;G06V10/80;G06V10/82;G06N3/045;G06N3/0464;G06N3/0475;G06N3/084;G06N3/094 |
代理公司: | 合肥天明专利事务所(普通合伙) 34115 | 代理人: | 娄岳 |
地址: | 230031 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 生成 对抗 网络 病态 数据 增强 方法 | ||
本发明公开了一种基于生成对抗网络的病态人脸数据增强方法,包括获取病态人脸图像和健康态人脸图像并构建训练集;设计生成对抗网络模型,利用特征提取模块对输出图像病态程度进行自定义控制;将所述训练集输入生成对抗网络模型中进行训练,并调整参数优化生成对抗网络模型;将任意一张待处理的人脸源图像和任意一张病态人脸图像输入到所述优化后的生成对抗网络模型,将病态人脸图像的病态特征关键点迁移到人脸源图像上,合成为增强后的病态人脸图像。本发明解决了在缺少成对病态人脸图像的条件下病态人脸图像的自动增强生成,生成的病态人脸图像的病态特征更加清晰,视觉效果理想,为人脸图像的健康分析工作提供了足够多的样本数据。
技术领域
本发明涉及图像到图像翻译方法技术领域,特别涉及一种基于生成对抗网络的病态人脸数据增强方法。
背景技术
近年来,人脸识别技术获得了长足进步,并越来越多地应用到健康医学领域。在中医诊断学中,某些面部特征如脸色、眼睛、嘴唇等能反映人体器官可能存在的病变和异常。我们通过计算机视觉技术从人脸图像上提取检测病态的细微特征如黑眼圈、痤疮、面色等可用于人体的健康状态评估和亚健康分析,所开发的系统作为一种健康监测工具应用于公共卫生设施以及家庭日常保健,具有极其广泛的应用前景。
现有技术的不足之处在于,由于人脸图像较为隐私,又牵涉到医疗行为部分,因此用于健康医学领域的公开人脸数据资源甚少,大规模采集病态人脸数据难度较大,需要耗费大量人力与物力。同时常规的人脸数据集应用于基于人脸病态特征检测识别任务中效果并不理想,自拍相机的美颜功能/化妆修饰、图片分辨率低等一些问题使得面部细微病态特征如黑眼圈、痤疮等不明显,给人脸细微特征检测识别带来不小的困难,人脸数据存在类别严重不均衡的过采样问题。
发明内容
本发明的目的克服现有技术存在的不足,以对存在病态人脸数据严重不足的问题进行解决。
为实现以上目的,采用一种基于生成对抗网络的病态人脸数据增强方法,以解决上述背景技术中提出的问题。
一种基于生成对抗网络的病态人脸数据增强方法,包括:
S1、获取病态人脸图像和健康态人脸图像并构建训练集;
S2、设计生成对抗网络模型,利用加入生成对抗网络模型中的特征提取模块对输出图像病态程度进行自定义控制;
S3、将所述训练集输入生成对抗网络模型中进行训练,并调整参数优化生成对抗网络模型;
S4、将任意一张待处理的人脸源图像和任意一张病态人脸图像输入到所述优化后的生成对抗网络模型,将病态人脸图像的病态特征关键点迁移到人脸源图像上,合成为增强后的病态人脸图像。
作为本发明的进一步的方案:所述步骤S1获取病态人脸图像和健康态人脸图像并构建训练集的具体步骤包括:
S11、获取互联网中人脸图像数据,并删除分辨率低、光照条件差的人脸图像数据;
S12、根据人脸图像数据,筛选出病态人脸图像数据集和健康态人脸图像数据集,并构建病态人脸图像数据集;
S13、对病态人脸图像数据集中的所有人脸图像进行关键点检测,以人脸关键点进行人脸对齐,并根据两眼的人脸关键点位置将图像转化为尺寸归一化的人脸图像。
作为本发明的进一步的方案:所述S2设计生成对抗网络模型,利用加入生成对抗网络模型中的特征提取模块对输出图像病态程度进行自定义控制的具体步骤包括:
S21、设计生成对抗网络模型,生成对抗网络模型的生成网络采用双输入输出架构,将两个输入分支的输出特征图进行融合,再将融合后的特征图输出到若干个瓶颈残差结构,经过两个独立的反卷积网络上采样最终得到生成图像,所述输入分支包括下采样卷积模块和瓶颈残差结构,所述输出分支包括上采样反卷积模块和瓶颈残差结构;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院合肥物质科学研究院,未经中国科学院合肥物质科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011173820.2/2.html,转载请声明来源钻瓜专利网。