[发明专利]基于深度学习的甲状腺细胞病理切片恶性区域的检测方法有效
申请号: | 202011243793.1 | 申请日: | 2020-11-10 |
公开(公告)号: | CN112508850B | 公开(公告)日: | 2021-07-20 |
发明(设计)人: | 钱东东;何一凡;魏军 | 申请(专利权)人: | 广州柏视医疗科技有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 北京兴智翔达知识产权代理有限公司 11768 | 代理人: | 张玉梅 |
地址: | 510530 广东省广州*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 学习 甲状腺 细胞 病理 切片 恶性 区域 检测 方法 | ||
本发明公开了一种基于深度学习的甲状腺细胞病理切片恶性区域的检测方法,主要包括下列步骤:对甲状腺细胞进行病理切片;将病理切片在显微镜上的图像经过数字化处理后使用不同的染色剂进行涂抹以得到彩色的病理切片;将完整的病理切片裁剪出合适大小的切块作为深度神经网络模型的输入;筛除掉病理切片部分无效的切块;采用弱监督的学习方法对切块初步筛查后的病理切片进行良恶性分类;利用去假阳的方案构建一个基于随机森林的机器学习方法对良恶性分类的预测结果进行假阳的去除;借此,能进一步提高检测的准确率。以及病理切片的高危区域显示步骤:将每个切块的恶性预测的概率归一化并映射到原图中,生成热力图;给病理医生更直观的可视化显示。
技术领域
本发明是关于医学图像处理领域,特别是关于一种基于深度学习的甲状腺细胞病理切片恶性区域的检测方法。
背景技术
病理切片作为病理诊断的金标准,在临床和科研中都有十分重要的作用。甲状腺细胞病理筛查处于一个正在普及的阶段,细胞穿刺的病理筛查方法具有创伤小,风险低,快速诊断的优点,已经在许多三甲医院进行了普及。但是目前由于细胞病理筛查起步较晚,病理医生相对比较少,有经验的医生更是稀缺,从而造成了需要诊断的病例的积压。同时,细胞病理切片诊断中,经常存在的问题是获取不到目标细胞或者目标细胞过少,导致无法诊断。
基于此,本文提出了一种深度学习方法,在病理切片上预提取高风险的恶性细胞区域,协助医生进行诊断,作出决策,通过此流程,在大幅减少病理医生的工作量的同时,也降低了误诊率,提高了病理医生的工作效率,从而使病理医生可以将精力集中到更加复杂的病例上。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种基于深度学习的甲状腺细胞病理切片恶性区域的检测方法,其采用由粗到细多阶段训练的方法,先剔除掉明显无效的切块,对有效的切块进良恶性分类,通过去除假阳进一步提高检测的准确率。
为实现上述目的,本发明提供了一种基于深度学习的甲状腺细胞病理切片恶性区域的检测方法,包括下列步骤切片步骤、预处理步骤、图像采样步骤、切块初步筛查步骤、良恶性分类步骤、可疑区域的后处理步骤以及病理切片的高危区域显示步骤;切片步骤:对甲状腺细胞进行病理切片;预处理步骤:将病理切片在显微镜上的图像经过数字化处理后使用不同的染色剂进行涂抹以得到彩色的病理切片;图像采样步骤:将完整的病理切片裁剪出合适大小的切块作为深度神经网络模型的输入;切块初步筛查步骤:筛除掉病理切片部分无效的切块;良恶性分类步骤:采用弱监督的学习方法对切块初步筛查后的病理切片进行良恶性分类;可疑区域的后处理步骤:利用去假阳的方案构建一个基于随机森林的机器学习方法对良恶性分类的预测结果进行假阳的去除;以及病理切片的高危区域显示步骤:将每个切块的恶性预测的概率归一化并映射到原图中,将灰度图转化成彩色图像且生成热力图。
在一优选的实施方式中,切片步骤包括将彩色的病理切片图像由RGB空间转到灰度空间以及采用高斯滤波的方法对图像进行平滑处理。
在一优选的实施方式中,图像采样步骤中采用基于重叠面积为50%的重叠采样方法将完整的病理切片裁剪出合适大小的切块,切块的分辨率为512x512像素。
在一优选的实施方式中,切块初步筛查步骤中无效的切块为分辨率达不到要求的区域或未包含足够的甲状腺细胞的区域。
在一优选的实施方式中,切块初步筛查步骤中采用轻量化的resnet18的分类网络在imagenet训练得到的初始权重作为初始权重进行切块初步筛查,在resnet18的预测概率低于阈值的切块将被筛除。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州柏视医疗科技有限公司,未经广州柏视医疗科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011243793.1/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种载带专用顶升型分割器传动机组
- 下一篇:屏幕内容视频运动类型的判断方法