[发明专利]一种CeO2 有效
申请号: | 202011277606.1 | 申请日: | 2020-11-16 |
公开(公告)号: | CN112609210B | 公开(公告)日: | 2022-03-04 |
发明(设计)人: | 郭平义;丁江涛;邵勇;黄铭瑞;毛胜勇;王宇鑫;何震;郭云霞;王冬朋;欧文祥 | 申请(专利权)人: | 江苏科技大学 |
主分类号: | C25D3/12 | 分类号: | C25D3/12;C25D15/00;C25D5/36;C25D5/50;H01M8/0297 |
代理公司: | 南京正联知识产权代理有限公司 32243 | 代理人: | 杭行 |
地址: | 212003*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 ceo base sub | ||
本发明公开一种CeO2掺杂Cu/Mn复合膜/微晶界面层与金属基复合连接体及其制备方法,涉及固体氧化物燃料电池金属连接体复合材料领域,首先通过高能微弧合金技术沉积基体材料的微晶过渡层;再运用电化学沉积方法复合镀金属Cu结合纳米级CeO2颗粒的复合膜;再电化学沉积金属Mn作为整个复合材料的外层。其中通过在电沉积Cu镀层时添加的一定量纳米级CeO2来细化镀层晶粒,提高元素高温扩散性和复合层高温抗氧化性。有益效果为:制备的微晶界面层与金属基复合连接体,导电性强且具有优良的高温抗氧化性能,能够有效的阻止金属基材中Cr元素的外扩散,以提高固体氧化物燃料电池金属连接体的寿命与工作效率。
技术领域
本发明涉及固体氧化物燃料电池金属连接体复合材料,具体而言是涉及一种CeO2掺杂Cu/Mn复合膜/微晶界面层与金属基复合连接体的制备方法,应用于固态氧化物燃料电池或其它高温电池。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。固体氧化物燃料电池的应用范围相当广泛,几乎涵盖了所有的传统的电力市场,包括住宅用、商业用、工业用以及公共事业用发电厂等,甚至便携式电源、移动电源、偏远地区用电及高品质电源等,还可作为船舶动力电源、交通车辆动力电源等移动电源。其中以静置型的商业用电源、工业用热电合并系统及小型电源市场较为看好。
随着SOFC技术的发展,SOFC的工作温度已从1000℃降到650℃~800℃,使得用金属材料替代传统钙钛矿陶瓷制造连接体成为可能。和陶瓷材料相比,金属材料具有高的电子电导率和热导率、低成本、易加工及机械强度高等优点,受到广泛关注。在中温SOFC操作温度范围内,金属材料仍面临着高温氧化问题。只有表面形成 Al2O3、SiO2 或 Cr2O3 氧化膜的合金才具备抗高温氧化能力。然而,由于Al2O3和SiO2的电导率太低,可以形成Al2O3和SiO2膜的合金不适合用作连接体材料,只有形成Cr2O3氧化膜的合金最有希望用作固体氧化物燃料电池连接体材料。目前以铁素体不锈钢金属基材作为SOFC连接器材料是最好的选择之一,其拥有较好的抗腐蚀性能、匹配的热膨胀系数以及成本低等优点。但由于在SOFC工作期间,Cr氧化后所形成的Cr2O3或Cr2(OH)2以蒸汽的形式扩散到阴极而导致阴极中毒现像,缩短了SOFC的使用寿命。
为了提高SOFC的使用寿命,选择在固体氧化物燃料电池金属连接体表面沉积一层防护涂层,该涂层既能提高金属连接器抗氧化性能又能防止Cr挥发。近年来,可应用于SOFC金属连接体涂层材料得到广泛研究,目前涂层材料主要分为以下四类材料:活性元素氧化物、稀土钙钛矿氧化物、MAlCrYO耐高温合金材料和高温耐蚀导电尖晶石。研究得较多的高温耐蚀导电尖晶石涂层具有高电子传导率和低离子传导率,具有与相邻的燃料电池部件相近的热膨胀系数和化学相容性。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏科技大学,未经江苏科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011277606.1/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法