[发明专利]一种机器人运动技能学习方法及系统有效

专利信息
申请号: 202011300615.8 申请日: 2020-11-19
公开(公告)号: CN112605973B 公开(公告)日: 2022-11-01
发明(设计)人: 徐智浩;周雪峰;程韬波;吴鸿敏;苏泽荣;李晓晓 申请(专利权)人: 广东省科学院智能制造研究所
主分类号: B25J9/00 分类号: B25J9/00;B25J9/08;B25J9/16;B25J17/02
代理公司: 广东广盈专利商标事务所(普通合伙) 44339 代理人: 李俊
地址: 510070 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 机器人 运动 技能 学习方法 系统
【说明书】:

发明公开了一种机器人运动技能学习方法及系统,其方法包括:获取人类拖动示教的数据样本集;基于主成分分析法对所述数据样本集进行降维处理;在隐空间内建立变量约束条件,并结合所述变量约束条件对降维处理后的数据样本集进行筛选,生成隐空间数据集;采用高斯混合模型与混合高斯回归法对所述隐空间数据集进行建模学习,输出机器人运动控制训练模型;基于递归神经网络对所述机器人运动控制训练模型进行预测,求解模型优化解,并将所述模型优化解转换为机器人实际控制量。在本发明实施例中,通过利用少量人类示教数据且同时兼顾机器人本体的固有约束可实现机器人运动技能的自主学习,有效地提高算法的泛化能力与编程效率。

技术领域

本发明涉及机器人与人工智能领域,尤其涉及一种机器人运动技能学习方法及系统。

背景技术

机器人运动技能可实现机器人对给定任务的运动规划与运动指令生成,是机器人智能化的基础。针对实现机器人在复杂环境与任务下的自主运动这一研究热点,如何将人类的操作技能赋予机器人成为关键所在。传统上通常采用离线编程或者示教式编程,通过对运动任务进行几何化描述以及结合机器人运动学模型与插值方法进行计算求解,但这类方法存在对复杂任务的适应性不强、任务描述困难、对同类型任务需要重复编程等缺点。

随着人工智能技术的兴起,相关技术人员提出以数据驱动的方式从人类操作数据中提取出人类操作特点,并通过模拟人类操作特点来实现机器人的运行生成。这种纯数据驱动的学习方法能够有效提高机器人的任务适应性与编程效率,但是在运行过程中为借鉴人类对复杂任务与环境的适应能力,存在以下不足:(1)人类示教数据有限,尤其当机器人位型不佳(如临近关节限幅、临近奇异点等)时缺乏有效的训练数据;(2)需要大量实验数据进行采集标注,使得所搭建的神经网络结构庞大,算法的硬件实现较为困难。

发明内容

本发明的目的在于克服现有技术的不足,本发明提供了一种机器人运动技能学习方法及系统,通过利用少量人类示教数据且同时兼顾机器人本体的固有约束可实现机器人运动技能的自主学习,有效地提高算法的泛化能力与编程效率。

为了解决上述问题,本发明提出了一种机器人运动技能学习方法,所述方法包括:

获取人类拖动示教的数据样本集;

基于主成分分析法对所述数据样本集进行降维处理;

在隐空间内建立变量约束条件,并结合所述变量约束条件对降维处理后的数据样本集进行筛选,生成隐空间数据集;

采用高斯混合模型与混合高斯回归法对所述隐空间数据集进行建模学习,输出机器人运动控制训练模型;

基于递归神经网络对所述机器人运动控制训练模型进行预测,求解模型优化解,并将所述模型优化解转换为机器人实际控制量,实现机器人运动技能的学习。

可选的,所述获取人类拖动示教的数据样本集包括:

基于人类对机器人所执行的若干次拖动示教,依次记录所述机器人在每一次拖动示教过程中的采样时间与采样数据,其中所述采样数据包括所述机器人的关节角矩阵与末端执行位置矩阵。

可选的,所述基于主成分分析法对所述数据样本集进行降维处理包括:

对所述数据样本集进行归一化处理,获取归一化数据集;

计算所述数据样本集的协方差矩阵,并计算所述协方差矩阵的特征值;

基于所述特征值确定降维处理所利用到的转换矩阵,并结合所述归一化数据集构建出降维数据集。

可选的,所述在隐空间内建立变量约束条件包括:

根据机器人的运动学性质,构建所述机器人的关节速度与末端速度之间的等式约束条件以及所述机器人关节角度的不等式约束条件,并结合所述转换矩阵分别将所述等式约束条件与所述不等式约束条件映射到隐空间内表示。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东省科学院智能制造研究所,未经广东省科学院智能制造研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011300615.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top