[发明专利]基于图谱的漏洞知识挖掘方法及系统有效
申请号: | 202011397024.7 | 申请日: | 2020-12-03 |
公开(公告)号: | CN112671716B | 公开(公告)日: | 2022-07-05 |
发明(设计)人: | 和达;刘杰;王一凡;孙治;陈剑锋 | 申请(专利权)人: | 中国电子科技网络信息安全有限公司 |
主分类号: | H04L9/40 | 分类号: | H04L9/40;G06N5/02 |
代理公司: | 成都九鼎天元知识产权代理有限公司 51214 | 代理人: | 贾年龙 |
地址: | 610207 四川省成都市*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 图谱 漏洞 知识 挖掘 方法 系统 | ||
本发明公开了基于图谱的漏洞知识挖掘方法及系统,包括步骤:S1,收集网络空间安全领域公开漏洞数据导入数据库,构建漏洞知识图谱;S2,基于构建的知识图谱进行漏洞知识挖掘等;本发明将多源异构的公开漏洞信息进行融合,形成了统一的知识表示形式;通过知识图谱的关联查询以及推导,获得产品厂商到漏洞信息到攻击方法的闭环知识;基于知识图谱的算法挖掘更多漏洞相关知识。
技术领域
本发明涉及网络安全领域,更为具体的,涉及基于图谱的漏洞知识挖掘方法及系统。
背景技术
网络安全问题一直伴随着快速发展的互联网信息时代,对于安全从业人员而言,获得并且管理海量高质量漏洞数据具有关键价值,也是完备网络空间安全中必不可少的一环。然而,软件信息(CPE),漏洞数据(CVE,CNNVD,CNVD),软件缺陷(CWE),漏洞POC(exploitDB)等知识以不同的表现形式存放于不同的网站。因此,想要全局性的交叉引用漏洞信息来完整地分析漏洞十分困难。开发统一的漏洞知识表示形式,集成跨资源边界的信息,整合海量漏洞相关数据具有实际意义,这将使得进一步的知识共享和更深入的安全分析成为可能。
发明内容
本发明的目的在于克服现有技术的不足,提供一种基于图谱的漏洞知识挖掘方法及系统,将多源异构的公开漏洞信息进行融合,形成了统一的知识表示形式;通过知识图谱的关联查询以及推导,获得产品厂商到漏洞信息到攻击方法的闭环知识;基于知识图谱的算法挖掘更多漏洞相关知识。
本发明的目的是通过以下方案实现的:
基于图谱的漏洞知识挖掘方法,包括步骤:
S1,收集网络空间安全领域公开漏洞数据导入数据库,构建漏洞知识图谱;
S2,基于构建的知识图谱进行漏洞知识挖掘。
进一步地,包括步骤:
S3,基于漏洞知识挖掘结果,匹配用户的自然语言输入,形成了一个漏洞知识图谱专家系统。
进一步地,步骤S1包括:
S11,构建漏洞本体作为知识图谱的骨架,明确漏洞领域内的概念,属性,术语及相互关系;
S12,爬取漏洞网页,获取数据库类型的结构化漏洞数据源,从数据中抽取属性和关系信息,对多源异构数据进行实体消歧和共指消解的数据融合工作;
S13,将处理后的数据导入数据库,形成漏洞知识图谱。
进一步地,步骤S2包括:
基于节点度中心性统计漏洞最多的产品、厂商,度中心性测量图谱中一个节点与其他节点的关联程度,采用如下公式计算节点Vi的度中心性CD(Vi),即:
其中,给定一个拥有g个节点的图谱G=(V,E),V表示节点集合,E表示关系结合,节点Vi的度中心性CD(Vi)是i与其他(g-1)个j节点的直接连边总数求和。
进一步地,步骤S2包括:
基于局部链接的节点共同邻居相似度来推导判定某个漏洞节点的相似性漏洞;两个节点的相似度Sxy=|Γ(x)∩Γ(y)|,其中Γ(x)为节点的邻居节点集合,Γ(y)为节点y的邻居节点集合;若节点x和节点y同时从属于一种CWE缺陷分类,并且影响同一个产品,则Sxy=1,判定这两个CVE节点为相似漏洞。
进一步地,步骤S2包括:
基于随机游走Walktrap算法,找到CVE漏洞节点的社群聚类;通过使用igraph网络分析算法库中的walktrap方法,为每个CVE节点打上社群标签,聚类属性相似的CVE节点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国电子科技网络信息安全有限公司,未经中国电子科技网络信息安全有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011397024.7/2.html,转载请声明来源钻瓜专利网。