[发明专利]一种基于图分类的以太坊网络钓鱼诈骗检测方法及装置有效

专利信息
申请号: 202011417306.9 申请日: 2020-12-07
公开(公告)号: CN112600810B 公开(公告)日: 2021-10-08
发明(设计)人: 吴嘉婧;袁子豪;郑子彬 申请(专利权)人: 中山大学
主分类号: H04L29/06 分类号: H04L29/06;G06K9/62;G06Q40/04
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 苏云辉
地址: 510275 *** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 分类 以太 网络 钓鱼 诈骗 检测 方法 装置
【说明书】:

本申请公开了一种基于图分类的以太坊网络钓鱼诈骗检测方法及装置,方法包括:从以太坊网络中提取目标节点和预置阶邻居节点,预置阶邻居节点包括一阶邻居节点和二阶邻居节点;根据一阶邻居节点和二阶邻居节点构建以目标节点为中心节点的二阶交易子图网络;根据二阶交易子图网络中各节点的相关交易信息数据对二阶交易子图网络进行提炼处理,得到目标交易子图网络;采用预置图嵌入算法提取目标交易子图网络中的特征,得到网络表示向量;将网络表示向量输入预置分类器中进行二分类处理,得到目标钓鱼节点。本申请能够解决现有技术的手工特征局限性较为明显,且处理过程复杂,导致时间和运算成本较高的技术问题。

技术领域

本申请涉及以太坊网络安全领域,尤其涉及一种基于图分类的以太坊网络钓鱼诈骗检测方法及装置。

背景技术

区块链是一个分布式账簿技术,能够在非互信环境中保证实施节点之间的可信中介交易。区块链也可以被描述为在点对点网络中基于共识机制所维护的一个可信分布式数据库。区块链技术在去中心化、不可伪造性、匿名性、开放性等方面都具有突出优势,也因为被认为是下一代颠覆性核心技术,被广泛应用于各个领域之中,而其中最重要也是最知名的应用便是数字加密货币。在区块链技术的支持下,比特币、以太坊等区块链平台作为新兴的加密货币交易平台在世界范围内获得了极大的发展。

以太坊是当今世界上第二大加密货币交易平台,同时也是能够支持智能合约的最大区块链平台。以太坊支持用户通过智能合约的形式进行图灵完备语言编程,极大地丰富了加密货币贸易的层次和场景,进而衍生出区块链技术在经济金融领域的多项应用。但与此同时,由于区块链所伴随的安全监管问题,以太坊也逐渐成为了网络犯罪者的主要目标,包括钓鱼诈骗、庞氏骗局等诈骗行为频频发生,严重影响了以太坊上的区块链金融生态。

随着虚拟贸易的蓬勃发展,人们越发倾向于在线进行货币以及物品服务之间的交易,这给予了网络钓鱼诈骗非常多的可乘之机。钓鱼诈骗罪犯往往通过非法伪造官方网站以及电子邮件骗取用户的隐私信息,诸如密码、住址以及信用卡详细信息等。对于风险监管仍然不够完备的区块链生态系统来说,钓鱼诈骗无疑对其安全性构成了极大的威胁。如今,钓鱼诈骗已经逐步成为了以太坊中最被广泛使用的诈骗方式之一,这也迫使我们需要对该问题投入更多关注,找到预防和检测钓鱼诈骗行为的有效方法。

目前,针对以太坊网络的钓鱼诈骗检测技术中,多是结合领域认知以及统计学分析进行手动特征设计,然而这些手工特征缺乏自适应的学习训练过程,难以保证在不同情境中的适用性;另外,以太坊交易网络数据集非常庞大,从其中获取交易相关信息数据需要构建并处理大体量交易网络,这无疑是一个巨大的挑战,同时需要付出极大的时间及运算成本。

发明内容

本申请提供了一种基于图分类的以太坊网络钓鱼诈骗检测方法及装置,用于解决现有技术的手工特征局限性较为明显,且处理过程复杂,导致时间和运算成本较高的技术问题。

有鉴于此,本申请第一方面提供了一种基于图分类的以太坊网络钓鱼诈骗检测方法,包括:

从所述以太坊网络中提取目标节点和预置阶邻居节点,所述目标节点包括带标记的钓鱼节点和非钓鱼节点,所述预置阶邻居节点包括一阶邻居节点和二阶邻居节点;

根据所述一阶邻居节点和所述二阶邻居节点构建以所述目标节点为中心节点的二阶交易子图网络;

根据所述二阶交易子图网络中各节点的相关交易信息数据对所述二阶交易子图网络进行提炼处理,得到目标交易子图网络;

采用预置图嵌入算法提取所述目标交易子图网络中的特征,得到网络表示向量;

将所述网络表示向量输入预置分类器中进行二分类处理,得到目标钓鱼节点。

优选地,所述从所述以太坊网络中提取目标节点和预置阶邻居节点,包括:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011417306.9/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top