[发明专利]一种机器人视觉伺服抓取目标定位方法有效
申请号: | 202011459203.9 | 申请日: | 2020-12-11 |
公开(公告)号: | CN112560666B | 公开(公告)日: | 2021-08-17 |
发明(设计)人: | 张震;朱留存;张照崎;魏金占;苗志滨;王骥月;赵成龙;张坤伦 | 申请(专利权)人: | 北部湾大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
代理公司: | 广西中知科创知识产权代理有限公司 45130 | 代理人: | 李家恒 |
地址: | 535011 广西壮族*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 机器人 视觉 伺服 抓取 目标 定位 方法 | ||
本发明属于机器人视觉图像处理技术领域。一种机器人视觉伺服抓取目标定位方法,基于Shi‑Tomasi算法寻找特征点,并以特征点为中心截取子图像,利用二维高斯函数偏导数确定特征方向,根据特征方向对局部图像做方向标准化处理,提取标准局部图像LBP特征作为特征点描述子。最后,通过计算两幅图像中各特征描述子间的汉明距离实现特征匹配,提高了匹配精度,根据匹配结果,估计单应性矩阵,定位目标在场景图像中的位置和方向。本发明算法匹配速度快、定位精度高、稳定性好。
技术领域
本发明属于机器人视觉图像处理技术领域,具体涉及一种机器人视觉伺服抓取目标定位方法。
背景技术
目前机器人在工业应用中大部分是通过示教编程的方式运行,机器人工作前期需要进行大量的示教和调试,在机器人操作的过程中,机器人的初始和终止位姿是事先设定并严格规定的,虽然速度较快,但如果目标物体的位置不固定就会造成机器人抓取失败,工作效率低。近些年来,将机器视觉和机器人技术结合应用在生产中已经成为一种趋势,机器视觉采集外界环境信息并对其进行处理整合,然后反馈给机器人控制系统,由控制系统实时引导机器人完成作业。使用机器视觉技术对生产线上的目标进行检测与识别,可极大的提高生产线的智能化水平与产品的质量。目前机器人视觉已经广泛的应用在物件分拣、缺陷检测、装配、包装等各个领域。其中目标识别实时定位是机器人利用视觉实现抓取的关键技术和主要研究点。
现有的机器人视觉伺服抓取目标定位系统可实时采集机器人观察到的图像和感受到力量反馈。根据不同的工件、维度选择合适的力度,从抓取、装配到检测,一般最快仅需0.1秒。但是满足该速度的话需要增设双目立体影像成像系统或基于深度图像绘制的立体成像系统,但是现有成像系统传输效率低,图像匹配精度不高,目标定位误差大,计算效率低,因此影响机器人目标识别与定位。机器人视觉伺服抓取,对定位精度和实时性要求较高,但经典的SIFT、SURF算法虽然定位精度高,但实时性差,ORB算法以速度快著称,但定位精度不能满足要求。
有鉴于此,本发明提供一种机器人视觉伺服抓取目标定位方法。
发明内容
为了克服现有技术所存在的问题,本发明提供一种算法时间复杂度低,精度高且速度快的新型的机器人视觉伺服抓取目标定位方法。
为了实现上述目的,本发明采用以下技术方案:
一种机器人视觉伺服抓取目标定位方法,该方法包括如下步骤:
S1、使用机器人携带的视觉传感器采集数据集中的两幅图像作为待比较图像,其中一幅为标准图像,另一幅为场景图像;
S2、采用Shi-Tomasi算法提取所述两幅待比较图像中的特征点;
S3、构造特征描述子;
S3.1、以特征点为中心截取子图像;
S3.2、利用二维高斯函数偏导数确定特征方向;
S3.3、根据特征方向对局部图像做方向标准化处理获取标准化局部图像;
S3.4、提取标准化局部图像的LBP特征作为特征描述子;
S4、通过计算两幅图像中各特征点描述子间的汉明距离判断相似度,实现特征匹配,根据匹配结果,估计单应性矩阵,定位目标在场景图像中的位置和方向;
进一步的,所述S2中,采用Shi-Tomasi算法提取所述两幅待比较图像中的特征点的具体方法为:
首先,以待检测点为中心加窗,获取窗内像素强度,然后,移动窗口,重新获取窗内像素强度,计算窗口移动前后的强度差,若沿任意方向移动窗口,强度差值大于预设值,则认为待检测点为特征点;
其中,强度差抽象为(1)式:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北部湾大学,未经北部湾大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011459203.9/2.html,转载请声明来源钻瓜专利网。