[发明专利]货币基金的组合投资预测方法和预测装置在审
申请号: | 202011492671.6 | 申请日: | 2020-12-17 |
公开(公告)号: | CN112613997A | 公开(公告)日: | 2021-04-06 |
发明(设计)人: | 吴波 | 申请(专利权)人: | 平安消费金融有限公司 |
主分类号: | G06Q40/06 | 分类号: | G06Q40/06;G06K9/62 |
代理公司: | 北京英特普罗知识产权代理有限公司 11015 | 代理人: | 程超 |
地址: | 200131 上海市浦东新区*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 货币基金 组合 投资 预测 方法 装置 | ||
本发明涉及智能决策技术领域,用于提高基金组合投资的预测准确率。本发明提供一种货币基金的组合投资预测方法及预测装置,所述方法包括:获取多支基金的第一历史业绩数据,利用收益预测模型分别确定每支基金的预测收益;获取目标商户的第一历史经营特征,利用流动资金预测模型确定所述商户的预测流动资金;获取目标商户在多个不同时段的当前经营特征,分别将每个所述当前经营特征、所述预测收益和所述预测流动资金作为随机森林模型的决策因子,以获得所述目标商户在所述多个不同时段的候选基金组合;其中每相邻两个时段之间包含交叉时段;根据多个所述候选基金组合中包含的不同基金的出现密度,确定推荐基金组合。
技术领域
本发明涉及智能决策技术领域,特别涉及一种货币基金的组合投资预测方法和预测装置。
背景技术
随机森林模型(Random Forest)目前在医疗、金融、气象等多种领域中已有广泛应用。随机森林模型能够处理大量的输入变数,评估变数的重要性,从而实现分类决策。
在金融领域,通常使用随机森林模型进行金融产品投资决策。由于投资类产品本身涉及到的特征参数数量非常之多,并且该特征参数具有很强的时效性,因此随机森林模型在相隔很短的时间内预测出的组合投资产品可能会有很大的出入,无论在稳定性方面还是准确性方面都不够理想,实际上现有的随机森林模型为投资者提供的参考价值并不大。
因此,如何为投资者提供更加准确可信的组合投资预测,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的是提供一种能够提高预测准确性和稳定性的组合投资预测方案,以解决现有技术中存在的上述问题。
为实现上述目的,本发明提供一种货币基金的组合投资预测方法,包括:
获取多支基金的第一历史业绩数据,利用收益预测模型分别确定每支基金的预测收益;
获取目标商户的第一历史经营特征,利用流动资金预测模型确定所述商户的预测流动资金;
获取目标商户的当前经营特征,将所述当前经营特征、所述预测收益和所述预测流动资金作为随机森林模型的决策因子,以获得所述目标商户对应的候选基金组合;
获取多个候选基金组合,基于多个候选基金组合中包含的不同基金的出现密度,确定推荐基金组合。
根据本发明提供的货币基金的组合投资预测方法,所述获取多支基金的历史业绩数据,利用收益预测模型分别确定每支基金的预测收益的步骤包括:
获取与每支基金对应的新增申购数量、新增赎回数量、沪深300指数、银行日间拆借利率、基金公司财报、基金公司成立时长、同类基金排名中的任意一种或多种,作为所述历史业绩数据;
将所述历史业绩数据输入收益预测模型,以输出每支基金在预设时间段的预测收益;其中所述收益预测模型是利用线性回归模型训练得到的。
根据本发明提供的货币基金的组合投资预测方法,所述将所述历史业绩数据输入收益预测模型,以输出每支基金在预设时间段的预测收益的步骤包括:
将所述历史业绩数据划分为工作日历史业绩数据和休息日历史业绩数据;
将所述工作日历史业绩数据输入所述收益预测模型,以输出所述基金在预设时间段的预测工作日收益;
将所述休息日历史业绩数据输入所述收益预测模型,以输出所述基金在预设时间段的预测休息日收益;
将所述预测工作日收益和所述预测休息日收益加权求和,以得到所述预测收益。
根据本发明提供的货币基金的组合投资预测方法,所述获取目标商户的历史经营特征,利用流动资金预测模型确定所述商户的预测流动资金的步骤包括:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安消费金融有限公司,未经平安消费金融有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011492671.6/2.html,转载请声明来源钻瓜专利网。