[发明专利]基于特征函数的并行式多传感器融合滤波方法在审

专利信息
申请号: 202011514183.0 申请日: 2020-12-21
公开(公告)号: CN112561834A 公开(公告)日: 2021-03-26
发明(设计)人: 袁洢苒;文成林;林志鹏;裘奕婷;徐晓滨 申请(专利权)人: 杭州电子科技大学
主分类号: G06T5/20 分类号: G06T5/20;G06T7/246;G06T7/277
代理公司: 浙江千克知识产权代理有限公司 33246 代理人: 周希良
地址: 310018 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 特征 函数 并行 传感器 融合 滤波 方法
【说明书】:

发明公开了一种基于特征函数的并行式多传感器融合滤波方法,本发明通过对多个传感器采用并行的设计方式,将所有传感器的测量信息并行起来进行滤波,各个传感器之间相互独立的工作,互不干扰,且不考虑信息的延时和丢包现象,时间效率高。通过并行的融合方式,可以在很大程度减少因信息缺失和传输干扰而导致的滤波估计误差,同时并行式滤波器在传感器数量特别大时,能简化计算复杂度,得到较高的估计精度,能在非线性系统甚至强非线性系统中得到很好的应用。

技术领域

本发明属于非线性动态系统的空间目标跟踪领域,特别涉及一类状态模型为线性,测量模型为强非线性系统的空间目标跟踪领域,可用于在空间目标跟踪过程中,对目标的实时位置和速度的优化处理。

背景技术

滤波方法是状态估计中的重要方法,状态估计在故障诊断、目标跟踪、信号处理、计算机视觉、通信、导航等领域有着非常广泛的应用。

传统的卡尔曼滤波只适用于状态模型和测量模型都为线性,且噪声为高斯白噪声的系统。当系统的噪声不再为高斯白噪声或者系统不再为线性系统时,传统的卡尔曼滤波方法将不再适用。在实际应用系统中,绝大部分系统模型都是非线性或者非高斯的,因此,针对非线性系统或者噪声为非高斯的系统,为了实现其状态估计,在卡尔曼滤波器的基础上,延伸出了多种滤波器。如扩展卡尔曼滤波器(EKF),但其最多只能达到二阶近似,舍弃掉的高阶项的信息会给滤波结果带来一定的误差;无迹卡尔曼滤波器(UKF)和容积卡尔曼滤波器(CKF)都是通过取点近似,对于非线性高斯系统,虽然EKF、UKF及CKF的应用都较为广泛,但其非线性近似都会造成一定误差,并且无法将这三种滤波器应用到非高斯系统,局限性较大。后来发展的粒子滤波器(PF),对于非线性非高斯系统,虽然在理论上得到了较好的解决,但其实现依赖于大量的粒子采样,使得计算复杂度非常高,重采样过程中粒子的退化现象,会降低滤波的速度和精度,影响了实际应用。

对于大量存在的强非线性观测系统,现有滤波方法仍难以很好解决。近期发展起来的特征函数滤波(CFF),只针对状态模型为线性的系统,对其测量模型无要求,对噪声为高斯或者非高斯也无要求,因此CFF有望解决测量模型为强非线性的系统。

虽然特征函数滤波在理论上要优于其他任何一种非线性滤波方法,但其实现都是仅仅针对一个滤波器来说的。在实际使用中只能尽可能降低误差,也不能完全消除误差。造成特征函数滤波精度不高最主要的原因往往来自于四个部分,第一,数据收集不准确。对于空间中运动的目标,其x、y、z轴三个方向上的位置和速度都是实时变化的,如果仅仅只用一个传感器去对目标进行测量,无法全面准确的捕获目标的变化情况。第二,随机噪声设定不准确。在对系统进行建模时,噪声的随机设定也过于理想化,而在实际的空间动态系统中,随着速度的增加,目标受外界环境以及一些随机因素的影响较大,会造成实际的误差与系统设定的随机误差存在较大的偏差。第三,系统模型的复杂度较高。对于空间运动的目标,状态包含x、y、z轴方向上位置和速度六个状态变量,相较于常见的模型,复杂度过高。在实际滤波过程中,每一个状态在更新的时候都会产生一定的误差,综合考虑六个状态模型,误差可能会更大。第四,传感器自身的性能发生变化。由于传感器内部的零件老化或参数因使用年限而发生变化或因受潮而损坏等原因,会造成测量结果的不准确。第五,当传感器的数量又非常大的时候,无法在可控时间内完成时,也会影响估计精度。第六,在融合过程中,滤波器相互之间的干扰也会降低估计精度。

发明内容

为了克服上述现有技术的缺点,本发明的目的在于提供一种将多个传感器融合起来的并行式滤波方法。

本发明通过将多个传感器分布在空间中的不同位置,从不同方位来对空间目标进行测量,并且采用并行式的设计,使各个传感器之间相互独立的工作,然后将所有传感器测量得到的信息并行起来,以实现对目标位置和速度的实时跟踪。这种多个传感器融合的滤波方法不仅能在很大程度上提高估计精度,还能降低时间复杂度和计算复杂度,节约通信成本。

为了实现上述目的,本发明采用的技术方案是:

本发明包括如下步骤:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011514183.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top