[发明专利]一种基于智慧教育的用户推荐系统有效

专利信息
申请号: 202011520892.X 申请日: 2020-12-21
公开(公告)号: CN112559873B 公开(公告)日: 2021-08-13
发明(设计)人: 周欢 申请(专利权)人: 融易学控股(深圳)有限公司
主分类号: G06F16/9535 分类号: G06F16/9535;G06Q50/20
代理公司: 广州海藻专利代理事务所(普通合伙) 44386 代理人: 张大保
地址: 518000 广东省深圳市南山区粤海街道*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 智慧 教育 用户 推荐 系统
【权利要求书】:

1.一种基于智慧教育的用户推荐系统,其特征在于,其包括预处理服务器、推荐分析服务器、数据库和用户终端,所述预处理服务器包括数据分析单元和矢量创建单元,所述推荐分析服务器包括拟合优度单元和用户推荐单元,其中,

数据分析单元从数据库获取每个用户的涉及科目集,并对相应的用户元数据进行数据分析以得到每个涉及科目的科目活跃度、科目兴趣度和科目知识度;所述科目活跃度用于表征用户对科目的活跃程度;所述科目兴趣度用于表征用户对科目的感兴趣程度;所述科目知识度用于表征用户对科目相关知识的掌握程度;

矢量创建单元根据每个用户的所有涉及科目的科目活跃度、科目兴趣度和科目知识度为每个用户创建活跃度表征矢量、兴趣度表征矢量和知识度表征矢量;

目标用户通过用户终端发送用户推荐请求到推荐分析服务器,拟合优度单元获取目标用户的候选用户集,并获取每个候选用户的涉及科目集;遍历候选用户集中的候选用户,将当前正在遍历的候选用户作为目标候选用户,并将目标用户的涉及科目集与目标候选用户的涉及科目集进行对比以统计目标用户与目标候选用户的关联科目数量;

拟合优度单元获取目标用户的涉及科目数量,并根据目标用户与目标候选用户的关联科目数量和涉及科目数量得到目标用户与目标候选用户的用户关联比,并将用户关联比大于用户关联阈值的目标候选用户作为目标用户的关联用户以得到目标用户的关联用户集;

用户推荐单元遍历目标用户的关联用户集,将正在遍历的关联用户作为目标关联用户,对目标关联用户的活跃度表征矢量、兴趣度表征矢量和知识度表征矢量进行特征变换以得到目标关联用户的特征值分布矩阵,并根据目标关联用户的特征值分布矩阵判断目标关联用户的活跃度表征矢量、兴趣度表征矢量和知识度表征矢量是否服从多维正态分布;

在服从多维正态分布时,用户推荐单元分别根据目标用户和目标关联用户的活跃度表征矢量、兴趣度表征矢量和知识度表征矢量得到目标用户与目标关联用户的拟合优度,将关联用户集中的关联用户按照拟合优度进行排序以生成用户推荐表,并将用户推荐表发送给目标用户。

2.根据权利要求1所述的系统,其特征在于,所述用户元数据包括:课程发布数据、历史浏览数据和课程学习数据。

3.根据权利要求1或2所述的系统,其特征在于,所述涉及科目为用户接触过的科目,包括历史学习科目、当前学习科目和意向学习科目。

4.根据权利要求3所述的系统,其特征在于,拟合优度单元将目标用户的涉及科目集与目标候选用户的涉及科目集进行对比以统计目标用户与目标候选用户的关联科目数量包括:

拟合优度单元提取涉及科目的第一维度矢量、第二维度矢量和第三维度矢量,并将第一维度矢量、第二维度矢量和第三维度矢量并行排列以得到科目特征矢量,获取科目特征矢量的协方差矩阵然后根据科目特征矢量的协方差矩阵对科目特征矢量进行归一化处理以得到涉及科目的科目表征矢量;

遍历目标用户的涉及科目集,将正在遍历的涉及科目作为目标涉及科目,获取目标涉及科目的科目表征矢量与目标候选用户的涉及科目集中每个涉及科目的科目表征矢量的矢量相似度,并将矢量相似度大于相似度阈值的目标涉及科目作为关联科目;重复以上步骤直到将目标用户的涉及科目集遍历完;

拟合优度单元根据目标用户的涉及科目集中的所有关联科目以得到关联科目集,并统计关联科目集中关联科目的数量以得到关联科目数量。

5.根据权利要求4所述的系统,其特征在于,用户推荐单元根据目标用户与关联用户的拟合优度生成用户推荐表包括:

用户推荐单元获取目标用户与关联用户集中每个关联用户的拟合优度,并将目标用户与关联用户集中每个关联用户的拟合优度与拟合优度阈值进行比较,

将拟合优度大于拟合优度阈值的关联用户作为推荐用户,根据所有推荐用户得到推荐用户集,将推荐用户集中的所有推荐用户按照拟合优度进行降序排序以得到用户推荐表,并将推荐用户表发送给目标用户。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于融易学控股(深圳)有限公司,未经融易学控股(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011520892.X/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top