[发明专利]基于细菌觅食算法优化灰色神经网络的违约概率预测方法在审
申请号: | 202011536762.5 | 申请日: | 2020-12-23 |
公开(公告)号: | CN112634019A | 公开(公告)日: | 2021-04-09 |
发明(设计)人: | 江远强 | 申请(专利权)人: | 百维金科(上海)信息科技有限公司 |
主分类号: | G06Q40/02 | 分类号: | G06Q40/02;G06Q10/04;G06N3/08;G06N3/04;G06N3/00;G06K9/62 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 201913 上海市崇明区长兴镇潘园公*** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 细菌 觅食 算法 优化 灰色 神经网络 违约 概率 预测 方法 | ||
1.一种基于细菌觅食算法优化灰色神经网络的违约概率预测方法,其特征在于,包括以下六个步骤:
S1、采集一定比例数量的正常和逾期还款客户作为建模样本,并采集建模样本的客户账户注册个人基本信息、监测软件中获取操作行为埋点数据作为信用数据,还款表现做标签化处理;
S2、数据预处理,对信用数据进行信息提取、预处理和归一化,去除不规则数据和填补缺失数据,将数据组按照7:3比例随机划分为训练集和测试集;
S3、根据建模样本的数据特征,构建灰色神经网络拓扑结构,确定网络的参数,初始化灰色神经网络的权值和偏置;
S4、构建灰色神经网络的权值偏置与细菌觅食算法的映射关系,通过细菌觅食算法得到最优权值和偏置赋给灰色神经网络,使用训练集对灰色神经网络进行训练;
S5、将测试集输入训练好的灰色神经网络模型进行测试,验证模型的准确性,并以模型精度评价指标与遗传算法、粒子群算法优化的模型进行对比与评价;
S6、将灰色神经网络模型部署至申请平台,获取实时申请客户的数据并将作为待测样本导入预测模型中输出违约概率预测结果,实现申请客户的实时审批,并定期将有表现数据输入到模型训练,实现模型的在线更新。
2.根据权利要求1所述的基于细菌觅食算法优化灰色神经网络的违约概率预测方法,其特征在于,在S1中,从互联网金融平台后端根据贷后表现选取一定比例和数量正常还款和逾期客户作为建模样本,采集样本客户账户注册申请时的个人基本信息、监测软件中获取操作行为埋点数据。其中用户的个人申请信息包括:手机号、学历、婚姻状况、工作单位、住址、联系人信息;所述埋点数据包括埋点时采集的设备行为数据和日志数据,其中设备行为数据包括:登录本平台的次数、点击次数、点击频率、输入总耗时及平均耗时、手机号数据、GPS位置、MAC地址、IP地址数据、地理信息申请频次、IP的申请频次、设备电量占比、陀螺仪的平均加速度,另外日志数据包括:7天内登录次数、首次点击到申请授信时长、一天内最多的session数、申请授信前一周的行为统计等。另外在合规要求下,不限于获取移动互联网行为数据、贷款APP内行为数据、信贷历史、运营商数据在内的全域多维度大数据。
3.根据权利要求1所述的基于细菌觅食算法优化灰色神经网络的违约概率预测方法,其特征在于,在S2中,首先,结合常识和统计学规律对于原始数据进行预处理,剔除错误数据;其次,由于神经网络复杂,网络对于输入数据比较敏感以及输入数据有着不同的单位和取值范围,各神经网络的激活函数、学习规则不同,在进行灰色神经网络模型预测前,需先对数据进行归一化处理,计算公式如下:
其中,xmax为样本数据中的最大值;xmin为样本数据中的最小值;归一化后结果的取值范围为[-1,1]。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于百维金科(上海)信息科技有限公司,未经百维金科(上海)信息科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011536762.5/1.html,转载请声明来源钻瓜专利网。