[发明专利]一种机器人步态优化方法在审
申请号: | 202011579191.3 | 申请日: | 2020-12-28 |
公开(公告)号: | CN114690788A | 公开(公告)日: | 2022-07-01 |
发明(设计)人: | 王建 | 申请(专利权)人: | 成都启源西普科技有限公司 |
主分类号: | G05D1/08 | 分类号: | G05D1/08 |
代理公司: | 北京天奇智新知识产权代理有限公司 11340 | 代理人: | 叶明博 |
地址: | 610000 四川省成都*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 机器人 步态 优化 方法 | ||
为了提升双足机器人在协作状态下的稳定性控制效果,本发明提供了一种机器人步态优化方法,用于对第一双足机器人的步态进行优化,包括:基于神经细胞层建立神经网络模型、利用步态测量装置获得的第一双足机器人的步态数据进行训练,以及训练第一双足机器人的步态平衡;根据平衡结果以及第二双足机器人的步态数据对第一双足机器人的步态进行优化。本发明的双足机器人不仅能够基于自身或其他双足机器人的经验数据提升步态控制模型的训练深度,而且能够与其他双足机器人有效合作,实现彼此经验共享,从而达到共同搬运同一货物、快速适应新环境以便于给予更重要任务以足够的运行时等效果。
技术领域
本发明涉及自动控制技术领域,更具体地,涉及一种机器人步态优化方法。
背景技术
随着科学技术的进步,双足机器人获得了快速发展并在多个领域被广泛应用。目前大多数建筑和工具是依照人的身高和形体设计的,因此双足机器人作为一种机器人平台具有更好的使用灵活性。同时,双足机器人步态的稳定性控制是机器人顺畅行走的前提和基础。步态是指在站立或步行过程中,各个关节在时间和空间上的一种相互关系,可以由关节的运动轨迹来描述。
现有的双足机器人步态的稳定性研究都是基于零力矩点(Zero Moment Point,ZMP)的方法,建立双足机器人的数学模型,并根据ZMP必须落在稳定区域,比如机器人足部的脚掌范围,去推导控制法则。然而,由于路况等因素很可能导致机器人行走失败,甚至出现双足机器人摔倒的现象。这种现象对于多个双足机器人协作时是致命的灾难。
发明内容
为了提升双足机器人在协作状态下的稳定性控制效果,本发明提供了一种机器人步态优化方法,用于对第一双足机器人的步态进行优化,包括:基于神经细胞层建立神经网络模型、利用步态测量装置获得的第一双足机器人的步态数据进行训练,以及训练第一双足机器人的步态平衡;根据平衡结果以及第二双足机器人的步态数据对第一双足机器人的步态进行优化。
进一步地,所述机器人的双足、踝关节和膝关节均为三自由度。
进一步地,所述步态数据包括角速度和加速度,所述角速度和加速度为前进方向的角速度和加速度。
进一步地,所述步态测量装置包括陀螺仪和加速度计。
进一步地,对步态数据的训练包括:
获得路面信息数据,其中,该路面信息数据至少包括电子地图中与当前位置有连通关系的路线信息以及经验数据;
获得步态数据,基于所述步态数据对预先构建的所述神经网络模型进行训练,得到一级训练模型:
其中i表示自由度,取值为1、2或3;p和q表示在1至10之间随机选取的一个正整数,且当以上两式角标无对应物理意义时取0;
利用一级训练模型对经验数据进行深度学习,学习结果用于进行霍普菲尔网络训练,得到二级训练模型。
进一步地,训练步态平衡包括:
获得至少一个第二双足机器人的步态数据,所述第二双足机器人的数量大于或等于3;
利用第一双足机器人的二级训练模型对每个第二双足机器人的步态数据进行深度学习,学习结果进行汇总,最终的学习结果用于进行稀疏自编码机训练,得到第一双足机器人的三级训练模型。
进一步地,根据平衡结果以及第二双足机器人的步态数据对第一双足机器人的步态进行优化包括:获得与所述第一双足机器人在行走方向上距离最远的一个第二双足机器人,基于该第二双足机器人的步态数据对第一双足机器人的二级训练模型进行深度学习,学习结果用于进行稀疏自编码机训练,得到第一双足机器人的四级训练模型;对于第一双足机器人的双足、踝关节和膝关节的各个自由度的动作设置,是以第一双足机器人的步态数据训练四级训练模型后得到的模型来输出动作参数的。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都启源西普科技有限公司,未经成都启源西普科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011579191.3/2.html,转载请声明来源钻瓜专利网。