[发明专利]基于深度学习的移动端类矩形物体边缘检测方法在审
申请号: | 202011596316.3 | 申请日: | 2020-12-28 |
公开(公告)号: | CN112634302A | 公开(公告)日: | 2021-04-09 |
发明(设计)人: | 高会军;刘金泽;郭绪亮;李秋生;郑祥滨 | 申请(专利权)人: | 航天科技控股集团股份有限公司 |
主分类号: | G06T7/13 | 分类号: | G06T7/13 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 时起磊 |
地址: | 150060 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 深度 学习 移动 矩形 物体 边缘 检测 方法 | ||
1.基于深度学习的移动端类矩形物体边缘检测方法,其特征在于:所述方法具体过程为:
步骤一、对待测物体边缘图像进行粗提取;
步骤二、对步骤一中粗提取后的图像使用OpenCV的HoughLinesP函数检测线段;
步骤三、将检测到的线段延长成直线,利用直线间的角度、距离约束条件,对相等、相似的直线利用求均值方法合成一条直线;
所述相似为角度相差小于等于5度,距离小于3个像素;
步骤四、计算直线或直线延长线之间的交叉点的距离,将距离小于20像素距离的交叉点合并;计算不能合并直线之间的交叉点个数;
步骤五、利用矩形或类矩形的角度条件,对不能合并直线之间的所有交叉点,每次取出其中的4个,判断这4个点组成的四边形是否是一个矩形或类矩形;若不是矩形或类矩形则删除;若是矩形或类矩形则保留;判断保留的矩形或类矩形的个数;若为1,得到矩形或类矩形的边缘;若大于等于2,执行步骤六;
所述类矩形为平行四边形或内角和为360度的四边形;
步骤六、找出周长或面积最大的矩形或类矩形,得到矩形或类矩形的边缘。
2.根据权利要求1所述基于深度学习的移动端类矩形物体边缘检测方法,其特征在于:所述步骤一中对待测物体边缘图像进行粗提取;具体过程为:
步骤一一、建立训练集;
步骤一二、建立HED网络模型;
步骤一三、将训练集输入HED网络模型进行训练,得到训练好的HED网络模型;
步骤一四、将待测物体边缘图像输入训练好的HED网络模型,对待测物体边缘图像进行粗提取。
3.根据权利要求2所述基于深度学习的移动端类矩形物体边缘检测方法,其特征在于:所述步骤一一中建立训练集;具体过程为:
训练集包含合成图像与真实图像。
所述真实图像为:需要检测的含有矩形或类矩形的图像;
所述合成图像为:在前景图上添加旋转、平移、透视变换,对背景图进行随机裁剪,利用OpenCV中的addWeighted()函数生成合成图像。
所述前景图指的是真实图像,背景图随机选取。
4.根据权利要求3所述基于深度学习的移动端类矩形物体边缘检测方法,其特征在于:所述步骤一二中建立HED网络模型;具体过程为:
HED网络模型包括五个卷积块;
第一卷积块包括卷积层1、卷积层2、池化层1;卷积层1连接卷积层2,卷积层2连接池化层1,池化层1连接第二卷积块;
第二卷积块包括卷积层3、卷积层4、池化层2;卷积层3连接卷积层4,卷积层4连接池化层2,池化层2连接第三卷积块;
第三卷积块包括卷积层5、卷积层6、池化层3;卷积层5连接卷积层6,卷积层6连接池化层3,池化层3连接第四卷积块;
第四卷积块包括卷积层7、卷积层8、池化层4;卷积层7连接卷积层8,卷积层8连接池化层4,池化层4连接第五卷积块;
第五卷积块包括卷积层9、卷积层10、卷积层11;卷积层9连接卷积层10,卷积层10连接卷积层11;
对每个卷积块得到的特征图进行反卷积,得到每个卷积块对应的反卷积后的特征图,将每个卷积块对应的反卷积后的特征图与对应通道的对应像素加权,将五个卷积块对应的加权值相加,得到融合后的特征图;
裁剪HED网络,缩小通道数量:
第一卷积块由64通道裁剪为16通道,第二卷积块由128通道裁剪为32通道,第三卷积块由256通道裁剪为32通道,第四卷积块由512通道裁剪为64通道,第五卷积块由512通道裁剪为128通道。
5.根据权利要求4所述基于深度学习的移动端类矩形物体边缘检测方法,其特征在于:所述步骤一三中将训练集输入HED网络模型进行训练,得到训练好的HED网络模型;具体过程为:
融合过程使用反卷积(deconv)时,将卷积核的值初始化成双线性放大矩阵;
设置学习率;
对融合后得到的特征图进行损失计算,损失最小为最优结果,得到训练好的HED网络模型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于航天科技控股集团股份有限公司,未经航天科技控股集团股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011596316.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种室内停车场高精度地图构建方法
- 下一篇:一种超小型起吊装置