[发明专利]行为预测模型的训练方法及装置有效

专利信息
申请号: 202011626281.3 申请日: 2020-08-14
公开(公告)号: CN112581191B 公开(公告)日: 2022-07-19
发明(设计)人: 庄晨熠;张志强;刘子奇;周俊;谭译泽;魏建平;刘致宁;吴郑伟;顾进杰;漆远;张冠男 申请(专利权)人: 支付宝(杭州)信息技术有限公司
主分类号: G06Q30/02 分类号: G06Q30/02;G06K9/62;G06N3/04;G06N3/08;G06V10/764;G06V10/762;G06V10/80;G06V10/82
代理公司: 北京亿腾知识产权代理事务所(普通合伙) 11309 代理人: 陈婧玥;周良玉
地址: 310000 浙江省杭州市*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 行为 预测 模型 训练 方法 装置
【说明书】:

本说明书实施例提供一种行为预测模型的训练方法,包括:针对目标对象,获取基于多个种子用户形成的多个正样本,其中任意的第一正样本包括,与第一种子用户对应的第一用户特征和正例标签,此标签指示对应用户是被确定为对目标对象做出特定行为的用户;基于多个种子用户各自的用户特征,采用无监督的离群点检测算法,确定第一种子用户的离群分数,作为针对行为预测任务的第一训练权重;利用包括上述多个正样本以及预先获取的多个负样本,对第一行为预测模型进行第一训练,具体包括:将第一用户特征输入第一行为预测模型中,结合得到的行为预测结果和上述正例标签,确定行为预测损失,并利用第一训练权重对其进行加权处理,以训练第一行为预测模型。

本申请是分案申请,其基于在2020年8月14日提出的发明名称为“行为预测模型的训练方法及装置”,申请号为:202010819192.4的专利申请而提出。

技术领域

本说明书实施例涉及计算机技术领域,尤其涉及一种行为预测模型的训练方法及装置。

背景技术

当前,服务平台通常会向用户进行产品或内容等业务对象的推荐或推送,例如,推荐一些网络课程、服装商品、广告图片等。随着业务对象数量的累积增长,以及不断涌现新的业务对象,为了提高用户体验,需要及时、准确地向用户推荐符合其需求和偏好的业务对象,相应地,服务平台可以利用机器学习模型预测用户行为,具体预测某用户是否会对某业务对象做出特定行为,从而根据预测结果确定是否向该某用户推荐该某业务对象,例如,通过预测某用户是否会对某篇文章进行浏览,确定是否向该用户推送该篇文章,又例如,通过预测某用户是否会购买某商品,确定是否向该用户推荐该商品。

显然,希望上述针对用户行为的预测能够尽可能的及时、准确。然而,目前预测用户行为的方式较为单一,预测的速度和准确度也十分有限。因此,需要一种方案,可以有效提高用户行为预测的及时性和准确性。

发明内容

采用本说明书描述的行为预测模型的训练方法及装置,可以同时有效提高行为预测模型的训练速度和模型性能,从而提高用户行为预测的及时性和准确性。

根据第一方面,提供一种行为预测模型的训练方法,包括:确定针对目标对象的多个样本用户,其中任一的第一样本用户对应第一样本硬标签,该第一样本硬标签指示该第一样本用户是否对所述目标对象做出特定行为;基于预先确定的嵌入向量集,确定对应于所述第一样本用户的样本用户特征向量,并且,确定对应于所述目标对象的目标对象特征向量;其中,所述嵌入向量集是利用训练后的图神经网络对构建的二部图进行图嵌入处理而确定;所述二部图包括对应于多个用户的多个用户节点,对应于多个对象的多个对象节点,以及用户节点向对象节点做出所述特定行为而形成的连接边,所述嵌入向量集中包括所述多个用户的多个用户特征向量和所述多个对象的多个对象特征向量;将所述样本用户特征向量输入第一行为预测模型中,得到行为预测结果;基于所述行为预测结果和所述第一样本硬标签,确定第一损失项;基于所述样本用户特征向量和所述目标对象特征向量,确定所述第一样本用户对该目标对象做出该特定行为的特定行为概率,作为第一样本软标签;基于所述行为预测结果和所述第一样本软标签,确定第二损失项;利用所述第一损失项和第二损失项,训练所述第一行为预测模型。

根据第二方面,提供一种行为预测模型的训练方法,包括:针对目标对象,获取基于多个种子用户形成的多个正样本,其中任意的第一正样本包括,与第一种子用户对应的第一用户特征和正例标签,该正例标签指示出,对应用户是被确定为对所述目标对象做出特定行为的用户;基于所述多个种子用户各自的用户特征,采用无监督的离群点检测算法,确定所述第一种子用户的离群分数,作为针对行为预测任务的第一训练权重;利用针对所述行为预测任务的训练样本集,对第一行为预测模型进行第一训练,所述训练样本集包括所述多个正样本以及预先获取的多个负样本;所述第一训练具体包括:将所述第一用户特征输入第一行为预测模型中,得到对应的行为预测结果;基于所述行为预测结果和所述正例标签,确定行为预测损失,并利用所述第一训练权重对该行为预测损失进行加权处理,得到加权损失;利用所述加权损失,训练所述第一行为预测模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于支付宝(杭州)信息技术有限公司,未经支付宝(杭州)信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202011626281.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top