[实用新型]一种聚变堆螺栓组预紧检测装置有效
申请号: | 202022182515.1 | 申请日: | 2020-09-29 |
公开(公告)号: | CN213516132U | 公开(公告)日: | 2021-06-22 |
发明(设计)人: | 张腾;李鹏远;柳根;候炳林;魏海鸿;孙振超;罗蓉蓉;李敏 | 申请(专利权)人: | 核工业西南物理研究院 |
主分类号: | G01L5/24 | 分类号: | G01L5/24 |
代理公司: | 核工业专利中心 11007 | 代理人: | 王婷 |
地址: | 610041 四川*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 聚变 螺栓 组预紧 检测 装置 | ||
本实用新型属于聚变堆大直径高强螺栓组的高精度预紧技术领域,具体涉及一种聚变堆螺栓组预紧检测装置及其预紧力检测方法,包括:重力支撑器、液压拉伸器和预紧力测试工具;所述重力支撑器2的两端分别设置有液压拉伸器和预紧力测试工具。本实用新型用于解决现有技术中螺栓预紧力误差及测量精度无法控制在2%以内的技术问题。
技术领域
本发明属于聚变堆大直径高强螺栓组的高精度预紧技术领域,具体涉及一种聚变堆螺栓组预紧检测装置。
背景技术
ITER托卡马克装置中大量存在着螺栓预紧装置。以ITER重力支撑为例,采用数组718合金螺栓组将316LN不锈钢板、316LN垫块预紧装配而成,单颗螺栓的预紧力最高达480吨,约合螺栓屈服强度的72%。
ITER托卡马克装置运行过程中该支撑需承受10000吨的超导磁体自重、数百吨的电磁力和以及ITER超导磁体在冷却时候的数百吨的热应力等极端复杂工况。过高的预紧力会造成螺栓中微裂纹的产生,进而使螺栓有较大的失效风险;过低的预紧力则容易使结构发生失稳。因此,热核聚变堆螺栓组预紧力加载及检测精度对ITER装置的稳定运行具有重要的意义。
目前,聚变堆大直径高强螺栓组大预紧力螺栓的预紧和检测一般采取液压张紧器以及超声波应力检测仪,但仍存在如下原因导致预紧力的加载及监测精度无法达到2%的精度要求:
1)同一规格的螺栓有效截面积A,弹性模量E,长度L等均存在偏差,未见合适的预紧力施加方法可以将螺栓组中每一个螺栓的预紧力的误差控制在2%以内。
2)由于螺栓的表面状态以及晶粒取向存在差异,使用超声波应力检测等仪器无法将测量精度控制在2%以内。
3)在安装过程中,各螺栓的预紧力会相互影响导致实际预紧力与设计值的偏差较大。
因此需要设计一种一种聚变堆螺栓组预紧检测装置以解决上述技术问题。
发明内容
本发明的目的是设计一种聚变堆螺栓组预紧检测装置,用于解决现有技术中螺栓预紧力误差及测量精度无法控制在2%以内的技术问题。
本发明的技术方案:
一种聚变堆螺栓组预紧检测装置,包括:重力支撑器2、液压拉伸器3和预紧力测试工具4;所述重力支撑器2的两端分别设置有液压拉伸器3和预紧力测试工具4。
所述重力支撑器2还包括:若干块韧性板21、若干个螺栓A22、螺栓B23和若干个夹块24;所述每块韧性板21之间两两平行设置,并在每块韧性板21的两端通过夹块24相互固定连接,所述每个夹块24上均布有若干个螺栓通孔,所述螺栓A22均匀布设在韧性板21一端的夹块24上,所述螺栓B23均匀布设在韧性板21另一端的夹块24上。
所述液压拉伸器3还包括:油泵31、高压油管32和拉伸器33;所述油泵31通过高压油管32与拉伸器33相连接。
所述预紧力测试工具4还包括:顶针41、千分表42、测量架43;所述测量架43的两端分别设置有顶针41和千分表42。
本发明的有益效果:
1)本发明使用高精度液压张紧器对螺栓进行预紧力施加,可以将超拉量控制在8%以内,降低预紧力施加过程中的微裂纹的可能性;
2)通过对每根螺栓在0.5级拉伸机上进行设计预紧力下的伸长量标定的方法确定其在设计预紧力下的伸长量;
3)使用液压张紧器使得每根螺栓在加载后的伸长量与标定伸长量的误差小于1%,确保每颗螺栓的实际预紧力与要求值小于1%;
4)本发明的检测方法分步分组重复预紧螺栓组,保证螺栓组中每一个螺栓的预紧力达到设计值;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于核工业西南物理研究院,未经核工业西南物理研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202022182515.1/2.html,转载请声明来源钻瓜专利网。