[发明专利]一种基于隐马尔科夫模型的传染病预测方法、系统和介质在审
申请号: | 202110053105.3 | 申请日: | 2021-01-15 |
公开(公告)号: | CN113053536A | 公开(公告)日: | 2021-06-29 |
发明(设计)人: | 方立群;刘玮;徐强;陈津津;蒋宝贵;张海洋;周士夏 | 申请(专利权)人: | 中国人民解放军军事科学院军事医学研究院 |
主分类号: | G16H50/80 | 分类号: | G16H50/80 |
代理公司: | 北京纪凯知识产权代理有限公司 11245 | 代理人: | 赵悦 |
地址: | 100850*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 隐马尔科夫 模型 传染病 预测 方法 系统 介质 | ||
本发明涉及一种基于隐马尔科夫模型的传染病预测方法、系统和介质,包括:S1生成气象水文观测序列和传染病爆发状态序列;S2对气象水文观测序列进行预处理以生成训练样本集,并将其中样本按照样本特征分为若干样本特征区间;S3根据样本特征、样本特征区间和传染病爆发状态序列计算观测概率矩阵和爆发状态转移概率矩阵;S4根据气象水文观测序列、传染病爆发状态序列、观测概率矩阵、爆发状态转移概率矩阵和初始状态概率分布生成隐马尔科夫模型;S5根据历史的气象水文观测序列预测将来某时刻的气象水文序列,并将预测的气象水文序列带入隐马尔科夫模型对传染病爆发状态进行预测。其具有计算速度快、准确性高、样本数据易于获取的特点。
技术领域
本发明涉及一种基于隐马尔科夫模型的传染病预测方法、系统和介质,属于人工智能智慧医疗技术领域。
背景技术
传染病的暴发对社会秩序的安定和人类的健康产生了一定的影响。在传染病的流行规律进行分析的基础上,用科学方法对传染病的流行趋势做出预测,可以对传染病 进行有效的主动预防与控制。传染病预测方法主要分为定性预测和定量预测,为保证 预测结果的准确性,需根据所预测传染病的预测目的、流行病学特征和资料特点等因 素合理选择,如预测某种传染病的发病率在未来是否会上升或下降,可选择定性预测 方法;如预测未来的流行趋势,则选择定量预测方法。
定性预测是通过对当地传染病的流行过程、流行特征及其有关因素的具体分析,判断该病即将流行的趋势和强度。研究方法主要包括流行控制图法、比数图法和“Z- D”现象等。定量预测是利用原始资料,建立恰当的数学模型,预测未来传染病的发病 情况。目前应用于传染病预测研究的数学模型较多,一类是基于动力学的微分方程模 型,该模型适用于自然发展过程中传染病,在人为的防控作用下,预测值与实际情况 相差甚大;一类是结合发病率影响因素的多元回归分析、人工神经网络模型和小波模 型等,此类方法在使用过程中对训练样本是否有代表性具有较高的要求,故不同的地 区、病种和时间的模型都需要根据具体情况进行调整,由于其分析的复杂性,局限了 此类方法的推广和应用。
发明内容
针对上述问题,本发明的目的是提供了一种基于隐马尔科夫模型的传染病预测方法、系统和介质,其具有计算速度快、准确性高、样本数据易于获取的特点。
为实现上述目的,本发明采取以下技术方案:一种基于隐马尔科夫模型的传染病预测方法,包括以下步骤:S1采集气象水文信息,生成气象水文观测序列和传染病爆 发状态序列;S2对气象水文观测序列进行预处理以生成训练样本集,并将训练样本集 中的样本按照样本特征分为若干样本特征区间;S3根据样本特征、样本特征区间和传 染病爆发状态序列计算观测概率矩阵和爆发状态转移概率矩阵;S4根据气象水文观测 序列、传染病爆发状态序列、观测概率矩阵、爆发状态转移概率矩阵和初始状态概率 分布生成隐马尔科夫模型;S5根据历史的气象水文观测序列预测将来某时刻的气象水 文序列,并将预测的气象水文序列带入隐马尔科夫模型对传染病爆发状态进行预测。
进一步,步骤S1中气象水文信息包括:降雨量RF、平均风速AW、平均气温AT、 平均最高气温HT、平均最低气温LT、平均气压AP、平均相对湿度ARH和日照时数SH。
进一步,步骤S1中传染病爆发状态序列包括:未爆发、局部爆发和大面积爆发。
进一步,步骤S2中将样本按照样本特征分为若干样本特征区间的方法为:将经过预处理的训练样本集中样本特征值j按照升序排列,若相邻样本的特征值之差小于预 设门限εj,则这两个样本属于同一特征区间,若相邻样本的特征值之差大于等于-预设 门限εj,则创建一新的特征区间。
进一步,步骤S3中观测概率矩阵的计算方法为:根据落入区间[b′j,b″j]d的样本个数和总的样本个数|Oj′|计算样本落入区间[b′j,b″j]d的概率plj(k,d):
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军军事科学院军事医学研究院,未经中国人民解放军军事科学院军事医学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110053105.3/2.html,转载请声明来源钻瓜专利网。