[发明专利]用于人工智能机器学习的业务大数据采集方法及服务器有效
申请号: | 202110077131.X | 申请日: | 2021-01-20 |
公开(公告)号: | CN112801156B | 公开(公告)日: | 2021-09-10 |
发明(设计)人: | 廖彩红 | 申请(专利权)人: | 曙光星云信息技术(北京)有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/08;G06N20/00 |
代理公司: | 广州市红荔专利代理有限公司 44214 | 代理人: | 吴伟文 |
地址: | 100000 北京市西城区*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 用于 人工智能 机器 学习 业务 数据 采集 方法 服务器 | ||
1.一种用于人工智能机器学习的业务大数据采集方法,其特征在于,包括:
针对预先设定的用于进行业务大数据采集的业务数据采集范围中产生的业务数据分别进行时域节点以及空域节点的节点数据采集,得到时空域节点数据;所述时空域节点数据包括所述业务数据采集范围中产生的业务数据对应的时域节点数据和空域节点数据;
对所述时空域节点数据进行拓扑融合分析,得到所述业务数据采集范围中的多个业务数据流和所述业务数据流对应的业务特征信息,并根据所述业务数据流和对应的业务特征信息得到业务数据流样本集合,以用于作为人工智能机器学习的业务数据学习样本进行机器学习;
其中,所述对所述时空域节点数据进行拓扑融合分析,得到所述业务数据采集范围中的多个业务数据流和所述业务数据流对应的业务特征信息包括:
分别将所述时空域节点数据中的时域节点数据和空域节点数据形成多个时域数据拓扑分布和多个空域数据拓扑分布;
根据所述时域数据拓扑分布和空域数据拓扑分布之间的业务拓扑关系,对所述业务数据采集范围中产生的各时域数据拓扑分布和各空域数据拓扑分布进行拓扑融合,得到多个拓扑分布融合组;每个拓扑分布融合组中的空域数据拓扑分布分别包括所述业务数据采集范围中的第二空域节点业务数据;
将因未匹配到相应的时域节点拓扑分布而未进行拓扑融合的空域数据拓扑分布确定为待处理空域数据拓扑分布,根据所述待处理空域数据拓扑分布包含的第一空域节点业务数据,获取所述待处理空域数据拓扑分布的第一拓扑分布描述信息;所述第一空域节点业务数据包含于所述业务数据采集范围;
根据所述每个拓扑分布融合组包括的第二空域节点业务数据,分别获取所述每个拓扑分布融合组中的空域数据拓扑分布的第二拓扑分布描述信息;
获取所述第一拓扑分布描述信息分别与所述每个拓扑分布融合组对应的第二拓扑分布描述信息之间的特征差异;
根据所述每个拓扑分布融合组对应的特征差异,确定所述每个拓扑分布融合组中的空域数据拓扑分布分别与所述待处理空域数据拓扑分布之间的拓扑关联参数;
统计拓扑关联参数不小于预设关联参数阈值的目标拓扑分布融合组,将所述目标拓扑分布融合组中的时域数据拓扑分布所包含的业务特征信息,确定为与所述待处理空域数据拓扑分布关联的业务特征信息;
将与所述待处理空域数据拓扑分布关联的业务特征信息和所述待处理空域数据拓扑分布进行拓扑融合,得到特征拓扑融合组;
根据所述特征拓扑融合组和所述多个拓扑分布融合组,确定所述业务数据采集范围中的业务数据流和所述业务数据流对应的业务特征信息,并根据所述业务数据流和对应的业务特征信息得到业务数据流样本集合。
2.根据权利要求1所述的方法,其特征在于,所述针对预先设定的用于进行业务大数据采集的业务数据采集范围中产生的业务数据分别进行时域节点以及空域节点的节点数据采集,得到时空域节点数据,包括:
获取所述业务数据采集范围中的多个时域节点业务数据和多个空域节点业务数据;
获取所述多个时域节点业务数据之间的时域关联参数和时域特征差异,获取所述多个空域节点业务数据之间的空域关联参数和空域特征差异;
根据所述时域关联参数和所述时域特征差异,对所述多个时域节点业务数据进行组合,得到所述业务数据采集范围中的时域数据拓扑分布;一个时域数据拓扑分布包括至少一个时域节点业务数据;
根据所述空域关联参数和所述空域特征差异,对所述多个空域节点业务数据进行组合,得到所述业务数据采集范围中的空域数据拓扑分布;一个空域数据拓扑分布包括至少一个空域节点业务数据。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于曙光星云信息技术(北京)有限公司,未经曙光星云信息技术(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110077131.X/1.html,转载请声明来源钻瓜专利网。