[发明专利]一种基于强跟踪滤波的雷达目标跟踪方法在审

专利信息
申请号: 202110093348.X 申请日: 2021-01-21
公开(公告)号: CN112835027A 公开(公告)日: 2021-05-25
发明(设计)人: 葛泉波;王梦梦;孙长银 申请(专利权)人: 同济大学
主分类号: G01S13/70 分类号: G01S13/70
代理公司: 上海光华专利事务所(普通合伙) 31219 代理人: 苗晓娟
地址: 200092 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 跟踪 滤波 雷达 目标 方法
【说明书】:

发明提供一种基于强跟踪滤波的雷达目标跟踪方法,适用于目标运动状态的雷达目标跟踪过程,所述方法包括:根据目标的运动特征,通过引入次优渐消因子,构建用于对目标运动状态进行强跟踪滤波的强跟踪滤波器模型,以及基于所述强跟踪滤波器模型,重复执行目标的强跟踪滤波,获得目标的运动状态跟踪信息,从而可以实现目标跟踪过程中的模型参数进行实时估计,有效地提高了目标跟踪的效果和稳定性。

技术领域

本发明属于目标跟踪技术领域,涉及一种基于强跟踪滤波的雷达目标跟踪方法。

背景技术

雷达的目标跟踪是雷达技术应用的重要方向之一,通过发射无线电波信号并接收反射回的无线电波信号,计算获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位和高度等运动状态信息,进而获得目标的准确位置。

在雷达的目标跟踪处理过程中,需要对获取的运动状态信息进行滤波,其中强跟踪滤波是雷达目标跟踪中常用的滤波方法,可以达到高精准的目标跟踪效果,其基本思想是通过利用自适应次优渐消因子对预测误差协方差阵进行实时修正,即为对目标的运动状态直接进行修正估计,并未考虑对模型参数的更新估计。然而,目前研究指出于目标跟踪处理过程中,对目标跟踪模型参数的自适应估计也是非常重要的,缺少对模型参数的跟踪,会导致研究人员对模型参数的分析和调节不到位,从而增大了目标运动状态的跟踪难度。

发明内容

鉴于以上现有技术中存在的缺点,本发明的目的在于提供一种基于强跟踪滤波的雷达目标跟踪方法,用于解决现有的强跟踪滤波方法无法对模型参数进行实时估计,导致模型参数未知,从而增大了模型调节的盲目性,和分析上的不透明性等问题。

为实现上述目的及其他相关目的,本发明提供一种基于强跟踪滤波的雷达目标跟踪方法,适用于目标运动状态的雷达目标跟踪过程,所述方法包括:根据目标的运动特征,通过引入次优渐消因子,构建用于对目标运动状态进行强跟踪滤波的强跟踪滤波器模型;基于所述强跟踪滤波器模型,重复执行目标的强跟踪滤波,获得目标的运动状态跟踪信息。

于本发明的一实施例中,所述根据目标的运动特征,通过引入次优渐消因子,构建用于对目标运动状态进行强跟踪滤波的强跟踪滤波器模型,包括:根据目标的运动特征,确定目标的运动模型,进而确定目标的过程噪声协方差和观测噪声协方差;根据所述过程噪声协方差和观测噪声协方差,构建Kalman滤波器第一模型;于所述过程噪声协方差矩阵中引入次优渐消因子,将所述Kalman滤波器第一模型变换为Kalman滤波器第二模型。

于本发明的一实施例中,所述于所述过程噪声协方差矩阵中引入次优渐消因子,将所述Kalman滤波器第一模型变换为Kalman滤波器第二模型,包括:构建次优渐消因子,并将所述次优渐消因子引入所述过程噪声协方差;采用近似次优方法解算所述次优渐消因子;基于解算后的所述次优渐消因子,将所述Kalman滤波器第一模型变换为Kalman滤波器第二模型。

于本发明的一实施例中,所述于所述过程噪声协方差矩阵中引入次优渐消因子,将所述Kalman滤波器第一模型变换为Kalman滤波器第二模型,还包括:于构建所述次优渐消因子过程中,引入用于削弱所述次优渐消因子调节作用的弱化因子β。

于本发明的一实施例中,所述根据目标的运动特征,通过引入次优渐消因子,构建用于对目标运动状态进行强跟踪滤波的强跟踪滤波器模型,包括:如上所述,本发明提供的一种所。根据目标的运动特征,确定目标的运动模型,进而确定目标的过程噪声协方差和观测噪声协方差;根据所述过程噪声协方差和观测噪声协方差,构建Kalman滤波器第一模型;于所述过程噪声协方差矩阵中引入多种次优渐消因子,将所述Kalman滤波器第一模型变换为Kalman滤波器第三模型。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110093348.X/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top