[发明专利]一种基于SAR图像全局-局部特征的舰船目标检测方法有效

专利信息
申请号: 202110161165.7 申请日: 2021-02-05
公开(公告)号: CN112766286B 公开(公告)日: 2021-09-14
发明(设计)人: 李刚;王学谦;刘瑜;何友 申请(专利权)人: 清华大学;中国人民解放军海军航空大学
主分类号: G06K9/46 分类号: G06K9/46;G06K9/62;G06K9/34;G01S13/90
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 廖元秋
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 sar 图像 全局 局部 特征 舰船 目标 检测 方法
【说明书】:

发明提出一种基于SAR图像全局‑局部特征的舰船目标检测方法,属于雷达图像处理领域。该方法首先对SAR图像建立对应的混合高斯模型,并对该图像进行超像素分割;然后分别计算每个超像素的费雪向量,以及每个费雪向量的全局密度对比度、全局密度距离对比度以及局部对比度;对全局密度对比度、全局密度距离对比度和局部对比度求积得到每个超像素的检验统计量;对每个检验统计量进行判定,最终得到SAR图像的舰船检测结果。本发明在SAR图像舰船检测中额外考虑了费雪向量的全局对比特征,有助于降低检测结果中的虚警率。

技术领域

本发明属于雷达图像处理领域,特别涉及一种基于SAR图像全局-局部特征的舰船目标检测方法,具体可用于合成孔径雷达图像中的舰船检测。

背景技术

合成孔径雷达(SAR)是一种主动成像装置,可提供海面舰船目标的高分辨成像结果。相比于光学、红外等传感器,SAR成像几乎不受光照和天气的影响,是一种具备全天候、全时段工作能力的传感器。SAR图像中的舰船目标检测是目前学术、国防领域的热点研究问题,它在军事海防、民船监视、可持续渔业等方面有着重要的应用。

费雪向量是一种图像多阶特征,包含SAR图像中超像素丰富的零阶、一阶、二阶信息。但现有基于费雪向量的SAR图像舰船检测方法大多基于费雪向量的局部对比,其中,2020年发表在IEEE Transactions on Geoscience andRemote Sensing上的文章ShipDetection in SAR Images via Local Contrast ofFisher Vectors中提出了一种只基于费雪向量局部对比的方法,该方法的主要步骤如下:首先对SAR图像建立对应的混合高斯模型,并对该图像进行超像素分割;然后分别计算每个超像素的费雪向量以及每个费雪向量的局部对比度,并将局部对比度作为检验统计量;对每个检验统计量进行判定,最终得到SAR图像的舰船检测结果。因此,现有方法缺乏对全局费雪向量对比的考量,导致检测结果中虚警目标较多,使得检测性能降低。

发明内容

本发明的目的是为克服已有技术的不足之处,提出一种基于SAR图像全局-局部特征的舰船目标检测方法。本发明在SAR图像舰船检测中额外考虑了费雪向量的全局对比特征,有助于降低检测结果中的虚警率。

本发明提出一种基于SAR图像全局-局部特征的舰船目标检测方法,其特征在于,该方法首先获取一张SAR图像,对该SAR图像建立对应的混合高斯模型,并对该图像进行超像素分割;然后分别计算每个超像素的费雪向量,以及每个费雪向量的全局密度对比度、全局密度距离对比度以及局部对比度;对全局密度对比度、全局密度距离对比度和局部对比度求积得到每个超像素的检验统计量,对每个检验统计量进行判定,最终得到SAR图像的舰船检测结果。该方法包括以下步骤:

1)获取一张SAR图像,该图像像素数量为N;设置超像素尺寸S,则该图像中超像素个数为表示向上取整;设置正则化参数λ>0;

2)建立该SAR图像对应的混合高斯模型GMM,表达式如下:

其中,ωqqq分别表示GMM中第q个高斯分布的权重、均值和标准差;Q0为混和高斯模型阶数;x表示图像中像素的灰度,f(x)表示GMM的概率密度函数,表示GMM中第q个高斯分布;

3)超像素分割;

将超像素的尺寸S、正则化参数λ、以及SAR图像作为输入,利用简单线性迭代聚类SLIC算法获得该SAR图像中的所有超像素;

4)计算每个超像素的费雪向量αl

其中,

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学;中国人民解放军海军航空大学,未经清华大学;中国人民解放军海军航空大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110161165.7/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top