[发明专利]一种乳腺癌腋窝淋巴结转移状态的检测方法及相关装置有效

专利信息
申请号: 202110271312.6 申请日: 2021-03-12
公开(公告)号: CN112884759B 公开(公告)日: 2023-04-07
发明(设计)人: 蔡念;黄柯敏;王慧恒;姜扬阳;林晓晴;周静雯;黎剑;王晗 申请(专利权)人: 广东工业大学
主分类号: G06T7/00 分类号: G06T7/00;G06V10/764;G06V10/80;G06V10/82
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 许庆胜
地址: 510060 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 乳腺癌 腋窝 淋巴结 转移 状态 检测 方法 相关 装置
【说明书】:

本申请公开了一种乳腺癌腋窝淋巴结转移状态的检测方法及相关装置,方法包括:获取病人的腋窝淋巴结部位的B型超声图像和剪切波弹性超声图像;将B型超声图像和剪切波弹性超声图像输入到深度学习模型中进行特征提取、特征融合和分类预测,得到病人的乳腺癌腋窝淋巴结转移状态检测结果。本申请解决了现有技术通过机器学习方法进行乳腺癌腋窝淋巴结转移状态的检测,由于数据样本较少,导致机器学习模型的预测性能不佳的技术问题。

技术领域

本申请涉及图像处理技术领域,尤其涉及一种乳腺癌腋窝淋巴结转移状态的检测方法及相关装置。

背景技术

乳腺癌的发病率在女性癌症中位居首位,占所有新诊断癌症的29%。腋窝淋巴结的状态是乳腺癌最重要的预后决定因素之一,及时、准确地检测腋窝淋巴结转移状态对指导乳腺癌的临床治疗至关重要。淋巴结活检是临床判定淋巴结转移状态的金标准。然而,淋巴结活检是一种有创的手术方式,会导致诸多术后并发症,例如淋巴水肿、血清瘤和感染性神经病变等。并且,对于乳腺癌早期患者而言,淋巴结活检会让患者承担不必要的术后风险与医疗费用,导致过度治疗。

现有的腋窝淋巴结无创术前影像学评价方法主要有乳腺钼靶摄影、CT(ComputerTomography,计算机断层成像)、MRI(Magnetic Resonance Imaging,核磁共振成像)、PET/CT(Positron Emission Tomography,正电子发射断层成像)和超声检查。乳腺钼靶摄影不能完全覆盖腋窝区域,诊断价值有限。PET或PET/CT对于鉴别转移性淋巴结的敏感性与特异性都不高。MRI的优点是取图时对操作者的依赖性小,并且可以比较双侧腋窝淋巴结,但是MRI检测范围有限,不能检测到所有腋窝淋巴结。腋窝超声检查是一种无创、无辐射且广泛应用于乳腺病变患者腋窝淋巴结评估的方法。然而,超声图像的判读依赖于放射科医生的主观评价,这导致了不同观察者之间存在差异。而通过机器学习方法进行乳腺癌腋窝淋巴结转移状态的检测,由于数据样本较少,导致机器学习模型的预测性能不佳。

发明内容

本申请提供了一种乳腺癌腋窝淋巴结转移状态的检测方法及相关装置,用于解决现有技术通过机器学习方法进行乳腺癌腋窝淋巴结转移状态的检测,由于数据样本较少,导致机器学习模型的预测性能不佳的技术问题。

有鉴于此,本申请第一方面提供了一种乳腺癌腋窝淋巴结转移状态的检测方法,包括:

获取病人的腋窝淋巴结部位的B型超声图像和剪切波弹性超声图像;

将所述B型超声图像和所述剪切波弹性超声图像输入到深度学习模型中进行特征提取、特征融合和分类预测,得到所述病人的乳腺癌腋窝淋巴结转移状态检测结果。

可选的,所述深度学习模型包括:影像组学特征模块、B型超声图像深度学习图像特征模块、剪切波弹性超声深度学习图像特征模块、特征融合模块和Softmax层;

所述将所述B型超声图像和所述剪切波弹性超声图像输入到深度学习模型中进行特征提取、特征融合和分类预测,得到所述病人的乳腺癌腋窝淋巴结转移状态检测结果,包括:

将所述B型超声图像和所述剪切波弹性超声图像输入到深度学习模型中,通过所述影像组学特征模块和所述B型超声图像深度学习图像特征模块分别对所述B型超声图像进行特征提取,得到第一特征向量和第二特征向量,通过所述剪切波弹性超声深度学习图像特征模块对所述剪切波弹性超声图像进行特征提取,得到第三特征向量;

通过所述特征融合模块对所述第一特征向量、所述第二特征向量和所述第三特征向量进行特征拼接,得到融合特征;

通过所述Softmax层对所述融合特征进行分类预测,得到所述病人的乳腺癌腋窝淋巴结转移状态检测结果。

可选的,所述影像组学特征模块为由输入层、隐藏层和输出层构成的多层感知器网络。

可选的,所述深度学习模型还包括目标特征提取模块;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110271312.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top