[发明专利]50G-PON网络中基于神经网络预测的上行带宽分配方法有效
申请号: | 202110276560.X | 申请日: | 2021-03-15 |
公开(公告)号: | CN113207048B | 公开(公告)日: | 2022-08-05 |
发明(设计)人: | 许鸥;朱祥;秦玉文;陈哲;梁嘉琪 | 申请(专利权)人: | 广东工业大学 |
主分类号: | H04Q11/00 | 分类号: | H04Q11/00;H04L41/0896;H04L41/142;H04L41/147;H04L47/2425 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 刘俊 |
地址: | 510090 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 50 pon 网络 基于 神经网络 预测 上行 带宽 分配 方法 | ||
本发明提供一种50G‑PON网络中基于神经网络预测的上行带宽分配方法,包括:训练LSTM神经网络;所有ONU向OLT发送报告消息,报告队列长度;OLT根据报告消息对ONU的业务进行优先级划分,并依据RTT对所有ONU和报告队列长度进行排序;根据排序结果和LSTM神经网络对所有业务进行分配;对于最后一个ONU的低优先级业务进行计算分配,保证在该轮询周期内的结束时间相同,得到分配结果;OLT将分配结果进行打包并发布给所有ONU;各个ONU根据收到的分配结果依次发送信息。该上行带宽分配方法采取神经网络预测的方式,确保了数据可以及时的转发,有效降低了传输延迟;同时,本方案考虑了不同业务对带宽大小和延迟需求的特点,对传输顺序进行合理的分配,保证了网络服务质量。
技术领域
本发明涉及光接入网通信技术领域,更具体的,涉及一种50G-PON网络中基于神经网络预测的上行带宽分配方法。
背景技术
PON网络系统是目前使用最广泛的网络结构之一,是解决光纤通信中“最后一公里”的最佳方案。其结构是点对多点的树状结构,一个光线路终端(OLT)与多个光网络单元(ONU)相连接。在其上行通信中,多个ONU共享一条上传通路,这就需要对上行通路进行合理的分配,防止各个ONU传输信息时产生冲突。带宽分配算法可以分为静态带宽分配和动态带宽分配。静态带宽分配算法是为每个ONU提前分配好固定带宽,这种算法对于轻负载ONU会造成带宽浪费,而对于重负载的ONU又会造成较大的延迟。目前,带宽分配算法主要以动态带宽分配算法(DBA)为主进行研究。IPACT是经典的带宽分配算法,该算法会将所有ONU的带宽信息收集起来,从全局进行带宽分配,保证了公平性和较低的延迟。
根据IEEE 802.3ca的最新标准,50G-PON网络根据不同的下传速率/上传速率分为三类:50G/10G,50G/25G和50G/50G。对于前两类,下传波长和上传波长均为一条波长;而对于第三种,下传波长和上传波长均有两条速率为25G的波长组成。而之前的DBA算法都是针对旧标准研究制定的,因此需要一种新的DBA算法来满足该网络的需求。
传统的离线带宽分配方式,需要将所有的ONU的带宽信息收集起来,统一进行分配调度;这种方式会导致从ONU发送带宽请求信息到实际发送数据有较长的时间间隔,而这段时间内新增加的数据不能及时发送,需要等待下一周期的调度安排,造成了延迟,虽然已经有一些方法来解决这些问题,但是这些方法都是基于线性模型,对于网络流量这种非线性特征十分明显的模型效果较差,表现在不能准确预测出流量的突变。
公开号为CN110213679A的中国发明专利申请于2019年9月6日公开了一种无源光网络系统及其实现方法,包括:光线路终端OLT确定一固定值T,依据PON系统所承载业务的特性为光网络单元ONU分配带宽,且任意相邻两个带宽之间的间隔不超过所述固定值T;该方法虽然使带宽分配不再依赖于ONU的带宽请求或者OLT对ONU流量的监控,缩短了ONU发送数据的延迟,但其对于传输延迟缩短的时间十分有限,不适用于IEEE 802.3ca的最新标准。
发明内容
本发明为克服现有的带宽分配方式在适用IEEE 802.3ca的最新标准的过程中,存在明显传输延迟的技术缺陷,提供一种50G-PON网络中基于神经网络预测的上行带宽分配方法。
为解决上述技术问题,本发明的技术方案如下:
50G-PON网络中基于神经网络预测的上行带宽分配方法,包括以下步骤:
S1:采集相关网络数据,构建并LSTM神经网络;
S2:所有光网络单元,即ONU向光线路终端,即OLT发送报告消息,报告队列长度;
S3:OLT根据报告消息,对ONU的业务进行优先级划分,并依据往返时延,即RTT对所有ONU和报告队列长度进行排序;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110276560.X/2.html,转载请声明来源钻瓜专利网。