[发明专利]一种基于多模态特征完备表示的短视频分类方法在审

专利信息
申请号: 202110282974.3 申请日: 2021-03-16
公开(公告)号: CN113158798A 公开(公告)日: 2021-07-23
发明(设计)人: 井佩光;张丽娟;苏育挺 申请(专利权)人: 天津大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06F16/71;G06F16/75;G06F16/78;G06F16/783
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 李林娟
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 多模态 特征 完备 表示 视频 分类 方法
【说明书】:

发明公开了一种基于多模态特征完备表示的短视频分类方法,所述方法包括:对于短视频自身内容信息,提出以视觉模态特征为主,从模态缺失角度构建四个子空间并分别获得潜在的特征表示,对四个子空间的潜在特征表示进一步利用自动编解码网络进行融合以保证学习到更鲁棒且有效的公共潜在表示;对于标签信息,采用逆协方差估计和图注意网络探究标签间的相关性并更新标签表示,得到与短视频对应的标签向量表示;对公共潜在表示和标签向量表示提出基于多头注意的多头跨模态融合方案,用于获得短视频的标签预测分数;模型的整体损失函数由传统的多标签分类损失和自动编解码网络的重建损失组成,用来度量网络输出值与实际值之间的差距,并以此来指导网络找寻模型最优解。

技术领域

本发明涉及短视频分类领域,尤其涉及一种基于多模态特征完备表示的短视频分类方法。

背景技术

近年来,随着智能终端的普及以及社交网络的火热,越来越多的信息采用多媒体内容呈现,高清摄像头、大容量存储和高速网络连接为用户创造了极其便利的拍摄和分享条件,从而创造了海量的多媒体数据。

短视频作为一种新型的用户生成内容,凭借其创作门槛低、碎片化内容以及较强的社交属性等独特优势在社交网络中受到了极大的欢迎。尤其是2011年以来,伴随着移动互联网终端的普及和网络的提速以及流量资费的降低,短视频迅速获得了包括各大内容平台、粉丝以及资本等多方的支持与青睐。有数据显示,全球移动视频流量已经占据移动数据总流量的一半以上,且持续高速增长。规模庞大的短视频数据很容易湮没用户需要的信息,使得用户难以找到其所期望的短视频信息内容,所以如何有效处理和利用这些信息变得至关重要。

以深度学习为代表的人工智能技术已经成为当今最流行的技术之一,被广泛运用到计算机视觉等众多领域中。

因此,将其引入到短视频的分类任务中不仅有利于推动计算机视觉以及多媒体领域相关课题的创新,对于用户体验的提升以及工业界的发展也具有很重要的应用价值和现实意义。

发明内容

本发明提供了一种基于多模态特征完备表示的短视频分类方法,解决了短视频多标签分类问题并对结果进行评估,详见下文描述:

一种基于多模态特征完备表示的短视频分类方法,所述方法包括:

对于短视频自身内容信息,提出以视觉模态特征为主,从模态缺失角度构建四个子空间并分别获得潜在的特征表示,对四个子空间的潜在特征表示进一步利用自动编解码网络进行融合以保证学习到更鲁棒且有效的公共潜在表示;

对于标签信息,采用逆协方差估计和图注意网络探究标签间的相关性并更新标签表示,得到与短视频对应的标签向量表示;

对公共潜在表示和标签向量表示提出基于多头注意的多头跨模态融合方案,用于获得短视频的标签预测分数;

模型的整体损失函数由传统的多标签分类损失和自动编解码网络的重建损失组成,用来度量网络输出值与实际值之间的差距,并以此来指导网络找寻模型最优解。

其中,所述两类视觉模态特征潜在表示为:独特的视觉模态潜在表示和不同模态信息互补下的视觉模态潜在表示。

进一步地,所述采用逆协方差估计和图注意网络探究标签间的相关性并更新标签表示,得到与短视频对应的标签向量表示具体为:

引入逆协方差估计,对于给定的标签矩阵V,寻找逆协方差矩阵S-1来表征标签的成对关系,即定义图关系函数来初始化图结构S;

将输入到该网络中的标签矩阵V转换成新的标签矩阵,并输入到图关系函数G(·)中,计算出新的标签矩阵下的图结构S′。

其中,所述基于多头注意的多头跨模态融合方案为:利用短视频视觉特征公共潜在表示查询标签,计算相关性,对齐短视频视觉模态公共潜在表示和标签矩阵。

本发明提供的技术方案的有益效果是:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110282974.3/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top