[发明专利]一种基于图像区域划分的非均匀一致模糊去除方法在审

专利信息
申请号: 202110288031.1 申请日: 2021-03-18
公开(公告)号: CN113096032A 公开(公告)日: 2021-07-09
发明(设计)人: 张艳宁;朱宇;王珮;李睿;孙瑾秋 申请(专利权)人: 西北工业大学
主分类号: G06T5/00 分类号: G06T5/00;G06T5/50;G06N3/04;G06N3/08
代理公司: 西北工业大学专利中心 61204 代理人: 刘新琼
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 图像 区域 划分 均匀 一致 模糊 去除 方法
【说明书】:

发明涉及一种基于图像区域划分的非均匀一致模糊去除方法,属于图像处理技术领域。包括以下步骤:提取单帧模糊图像中有利于后续重建清晰图像的特征图,将特征图输入到强模糊和弱模糊检测模块中,分别输出检测到的强模糊区域和弱模糊区域注意力图;分别将强模糊区域和弱模糊区域注意力图与特征图进行按位点乘,并加上输入的特征图,提取出按照图像成份被划分出的强模糊区域和弱模糊区域在原始特征图上的特征信息;随后分别输入到强模糊和弱模糊去除的解码器模块中,采用两个解码器分支同时重建潜在的清晰图像的形式,分别得到去除强模糊及弱模糊后的图像:之后输入到特征融合模块进而生成完整的去模糊后的最终清晰图像。

技术领域

本发明属于图像处理技术领域,涉及一种非均匀一致模糊去除方法,具体是一种基于图像区域划分指导下的非均匀一致模糊图像去模糊方法。

背景技术

与均匀一致模糊去除问题相比,非均匀一致运动模糊去除问题更加复杂和困难。文献“Nah,S.;Hyun Kim,T.;and Mu Lee,K.2017.Deep multiscale convolutionalneural network for dynamic scene deblurring.In Proceedings of the IEEEConference on Computer Vision and Pattern Recognition,3883–3891.”提出了一种非均匀模糊图像模糊去除方法,提出用卷积神经网络(Convolutional Neural Networks,CNN)模型拟合非均匀一致模糊图像的退化重建过程,利用多尺度的CNN架构模拟传统coarse-to-fine 的优化方法,提出基于对抗损失的优化模型,大大提高了算法的收敛性,提升了处理效果。

然而,由于不同模糊区域的模糊去除目的不同,例如强模糊区域需要去除明显模糊、平滑区域需要锐化增强细节、纹理区域需要保持细节,利用常规的统一网络训练策略学习非均匀运动去模糊模型,几乎无法同时实现上述目标。文献所采用的方法笼统地将不同模糊形式和程度的图像块视为一致,用统一的训练策略,对不同图像区域进行处理,忽视了不同模糊区域的差异,这种统一的训练策略很容易导致模型过拟合,包括文献方法在内的大多数非均匀一致模糊去除方法都未能有效针对不同模糊区域进行处理。

发明内容

要解决的技术问题

非均匀运动模糊在真实场景中十分普遍,其目的随不同的图像区域成份变化而变化,利用常规的统一训练策略学习非均匀运动去模糊模型很难同时达到对不同图像区域的不同处理,导致非均匀模糊区域效果不能同时提升。本发明提出了一种基于图像区域划分的改进非均匀去模糊框架,对模糊图像不同区域进行不同处理。具体来说,本方法提出了两个分支去除不同区域的模糊,并提出两个注意力机制模块学习强模糊和弱模糊区域的注意力图。然后,将注意力图输送到两分支的解码器中,并融合为最终的去模糊图像。

技术方案

一种基于图像区域划分的非均匀一致模糊去除方法,其特征在于步骤如下:

步骤1:模糊图像特征提取

针对单帧模糊图像B,设计一个特征提取编码器fE,通过该编码器提取出图像中有利于后续重建清晰图像的特征图F;

步骤2:自适应图像区域划分注意力图提取

将步骤1中得到的特征图F输入到两个不同的自适应图像区域划分注意力模块:强模糊检测模块fA_L和弱模糊检测模块fA_S中,分别输出检测到的强模糊区域的注意力图Iatt_L和弱模糊区域的注意力图Iatt_S

步骤3:两分支清晰图像重建

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110288031.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top