[发明专利]一种基于机器学习的水下爆炸载荷下船体板架结构动响应快速预报方法有效

专利信息
申请号: 202110302143.8 申请日: 2021-03-22
公开(公告)号: CN113312832B 公开(公告)日: 2022-04-29
发明(设计)人: 任少飞;刘永泽;张阿漫;王诗平;刘云龙;明付仁;李帅;崔璞 申请(专利权)人: 哈尔滨工程大学
主分类号: G06F30/27 分类号: G06F30/27;G06N3/00;G06N3/08;G06F111/06;G06F111/10;G06F113/08
代理公司: 哈尔滨市阳光惠远知识产权代理有限公司 23211 代理人: 张宏威
地址: 150001 黑*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 机器 学习 水下 爆炸 载荷 船体 结构 响应 快速 预报 方法
【权利要求书】:

1.一种基于机器学习的水下爆炸载荷下船体板架结构动响应快速预报方法,其特征是:包括以下步骤:

步骤1:采用任意欧拉-拉格朗日方法对水下爆炸载荷下船体板架结构响应进行数值计算获得数据样本;

步骤2:根据船体板架结构,对样本数据库进行降维,用以缩短深度神经网络训练时间;

步骤3:采用深度神经网络对降维后的样本数据库进行学习,并验证学习效果;

所述步骤2具体为:

据船体板架结构的对称形式对样本数据库进行降维,对于关于X轴对称的船体板架结构在水下爆炸载荷下的各节点位移矩阵A有:

其中,B为船体板架结构对称轴上方节点位移矩阵,C为船体板架结构对称轴下方节点位移矩阵,bij和cij分别船体板架结构对称轴上方和下方第i行j列节点位移信息;

由于船体板架结构关于X轴对称,cm,n=bi-m+1,n,对矩阵B中的数据进行训练和预测,实现数据降维;

对于关于Y轴对称的船体板架结构在水下爆炸载荷下的各节点位移矩阵A通过下式表示:

A=[B C]

其中,B为船体板架结构对称轴左侧节点位移矩阵,C为船体板架结构对称轴右侧节点位移矩阵,bij和cij分别船体板架结构对称轴左侧和右侧第i行j列节点位移信息;

由于船体板架结构关于Y轴对称,cm,n=bm,j-n+1,对矩阵B中的数据进行训练和预测,提高训练效率;

对于关于X和Y轴对称的船体板架结构在水下爆炸载荷下的各节点位移矩阵A通过下式表示:

其中,B为船体板架结构左上区域节点位移矩阵,C为船体板架结构右上区域节点位移矩阵,D为船体板架结构左下区域节点位移矩阵,E为船体板架结构右下区域节点位移矩阵,bij、cij、dij和eij分别船体板架结构左上、右上、左下和右下区域第i行j列节点位移信息;

由于船体板架结构关于X和Y轴对称,cm,n=bm,j-n+1、dm,n=bi-m+1,n、em,n=bi-m+1,j-n+1,对矩阵B中的数据进行训练和预测;

所述步骤3中具体为:

使用划分好的训练集数据对深度神经网络进行训练,其中深度神经网络的隐含层数取为1到3,从SGD、RMSprop和Adam中选取神经网络优化算法,当选择Adam则ρ1取0.9,取0.999,ε取10-8;选用ReLu函数作为激活函数,最后将验证集数据代入训练好的神经网络中验证深度神经网络的泛化能力;

步骤4:采用蚁群算法对深度神经网络的结构及超参数进行优化,提高深度神经网络训练效率和预报精度,输出泛化效果最佳的深度神经网络;

步骤5:对使用深度神经网络对水下爆炸载荷下船体板架结构动响应预报结果进行后处理。

2.根据权利要求1所述的一种基于机器学习的水下爆炸载荷下船体板架结构动响应快速预报方法,其特征是:所述步骤1具体为:

步骤1.1:根据一定当量炸药水下爆炸产生最大气泡的半径的确定水域尺寸,水域的尺寸应为一定当量的炸药在对应水深下产生气泡最大直径的2到4倍;

步骤1.2:根据药包初始半径确定水域网格尺寸,采用S-ALE方法对水域和空气进行离散,使气泡最大直径范围内网格尺寸最小,剩余区域网格尺寸为最大直径范围内网格尺寸的2倍;

步骤1.3:对船体板架结构进行建模并保证结构与水域最小网格尺寸一致,完成模型建立;采用任意欧拉-拉格朗日方法ALE对船体板架结构在水下爆炸载荷下的动响应进行计算,得到结构各节点的坐标以及各单元的等效塑性应变计算数据,建立样本数据库。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110302143.8/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top