[发明专利]融合语义流场的编解码网络港口影像分割方法在审

专利信息
申请号: 202110326425.1 申请日: 2021-03-26
公开(公告)号: CN113052180A 公开(公告)日: 2021-06-29
发明(设计)人: 郭海涛;卢俊;高慧;林雨准;龚志辉;余东行;袁洲;牛艺婷;饶子昱;王家琪 申请(专利权)人: 中国人民解放军战略支援部队信息工程大学
主分类号: G06K9/34 分类号: G06K9/34;G06K9/62;G06N3/04;G06N3/08
代理公司: 郑州睿信知识产权代理有限公司 41119 代理人: 黄晶
地址: 450001 河*** 国省代码: 河南;41
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 融合 语义 解码 网络 港口 影像 分割 方法
【说明书】:

发明涉及融合语义流场的编解码网络港口影像分割方法,属于图像分割技术领域,该方法包括将待分割图像输入至训练好的融合语义流场的编解码网络,将港口影像分割为海、陆以及舰船三种类别;编解码网络包括依次连接的编码层、空洞卷积层和解码层,编码层包括N层依次连接的卷积模块,解码层包括N层依次连接的反卷积模块,各反卷积模块中均设置有流对齐模块,各流对齐模块的输入与编码层中相应层级的卷积模块进行跳跃相连。本发明利用流对齐模块,通过预测特征图间的语义流场,监督上采样过程,以提高特征信息传递的有效性,并利用空洞卷积层获取影像的多尺度信息,使其更加适合港口影像分割任务,从而得到平滑、完整的分割结果,分割精度较高。

技术领域

本发明属于图像分割技术领域,具体涉及融合语义流场的编解码网络港口影像分割方法。

背景技术

随着遥感技术的快速发展,利用遥感影像进行海陆分割和海洋近岸目标检测逐渐成为当前研究的热点,在海岸线提取、海域交通管制、军事监测等方面具有重要的应用。然而,遥感影像港口区域的影像特征复杂,存在海浪、云层、阴影等诸多干扰因素,存在码头与舰船边界模糊不清的情况,导致港口影像分割中容易产生像素分类错误和边界模糊定位等问题,因此,准确的海陆分割和鲁棒的舰船检测具有挑战性。

传统海陆影像分割方法主要包括阈值分割法、区域生长法、活动轮廓模型法、基于马尔科夫随机场法等,这些利用影像的单一特征进行提取的方法,虽然在简单场景下可获得较高的分割精度,但易受到噪声干扰,出现海陆边界分割不准确或者错误分类的情况;另外遥感影像中舰船等海洋近岸目标类型多样、尺寸不一,导致传统检测方法鲁棒性较差,且在复杂场景中难以得到准确的检测结果。

近年来,已有学者将深度学习中的语义分割技术应用于港口影像海陆分割中,例如采用 SegNet、U-Net、Deeplabv3+、DenseASPP等语义分割网络,这些网络一般均包括编码结构、解码结构,其中解码结构通过上采样操作恢复特征图分辨率,双线性插值、转置卷积等没有考虑特征图像素间的关系,特征在编码过程中经残差网络多次池化后造成的特征信息丢失,加大了高低层特征图间的语义差异,造成特征融合时产生大量无效信息的传递,同时使得计算时间和所需的硬件资源大幅增加,影响分割精度。

发明内容

本发明的目的是提供融合语义流场的编解码网络港口影像分割方法,用于解决现有技术中港口影像分割精度低的问题。

基于上述目的,一种融合语义流场的编解码网络港口影像分割方法的技术方案如下:

将待分割图像输入至加载最优训练权重的融合语义流场的编解码网络,将港口影像分割为海、陆以及舰船三种类别;

所述融合语义流场的编解码网络的最优训练权重是通过训练样本及样本标签进行训练得到的,并且,所述融合语义流场的编解码网络包括依次连接的编码层、空洞卷积层和解码层,其中,编码层包括N层依次连接的卷积模块,N2;解码层包括N层依次连接的反卷积模块,每个反卷积模块中均设置有一个流对齐模块,各流对齐模块的输入与编码层中相应层级的卷积模块进行跳跃相连。

上述技术方案的有益效果是:

本发明将港口影像中海、陆及舰船置于同一语义分割框架内,提出了融合语义流场的编码-解码网络(SFD-LinkNet),该网络利用流对齐模块,通过预测特征图间的语义流场,监督上采样过程,以提高特征信息传递的有效性,并利用空洞卷积层获取影像的多尺度信息,使其更加适合港口影像分割任务,从而得到平滑、完整的分割结果,分割精度较高。

进一步的,为了保证编码效果,所述的编码层采用ResNet34网络,包括一层卷积核为 7×7的卷积操作,以及由残差模块分别叠加3、4、6、3次组成的Conv1、Conv2、Conv3、Conv4模块。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军战略支援部队信息工程大学,未经中国人民解放军战略支援部队信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110326425.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top