[发明专利]基于深度学习的资源学习路径规划方法及装置有效

专利信息
申请号: 202110362642.6 申请日: 2021-04-02
公开(公告)号: CN112734142B 公开(公告)日: 2021-07-02
发明(设计)人: 杨德杰 申请(专利权)人: 平安科技(深圳)有限公司
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q10/06;G06F16/22;G06F16/25;G06F16/38;G06F16/9535;G06N3/04;G06N3/08;G06Q50/20
代理公司: 深圳市精英专利事务所 44242 代理人: 李翔宇
地址: 518000 广东省深圳市福田区福*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 学习 资源 路径 规划 方法 装置
【说明书】:

发明公开了基于深度学习的资源学习路径规划方法、装置、计算机设备及存储介质,涉及人工智能技术,包括先实时采集虚拟对象的学习数据点击记录,并存储至虚拟对象数据库;之后在虚拟对象数据库中根据筛选条件获取目标数据组成样本集,以进行模型训练得到预测模型;最后若接收到当前课程子轨迹信息初始输入特征,将其输入至预测模型进行运算得到输出结果。实现了基于因学习课程而使得虚拟对象级别上升的学习课程轨迹得到样本数据对预测模型进行训练,得到的预测模型能够根据输入的课程轨迹输出推荐学习课程轨迹,因利用深度学习模型能提高预测精准度,而且能学习到更多的特征输入,模型更加的灵活。

技术领域

本发明涉及人工智能的智能决策技术领域,尤其涉及一种基于深度学习的资源学习路径规划方法、装置、计算机设备及存储介质。

背景技术

教育培训的重要目标之一是针对用户个性化需求实现差异化的培训课程推荐,只有满足不同个体的培训需求,才能在有限培训资源的情况下实现培训效果最大化。目前,常见的教育培训方式是在线教育,在线教育实现课程推荐一方面要因人而异匹配内容,另外需要根据每个对象的实习情况推荐最优的学习路径。

个性化学习路径是指根据学习者的个人能力和现状提供个性化的资源学习序列,从而提升学习者的学习效率和学习效果。而个性化学习路径的生成过程是指根据学习者的特点及内外部因素来决定学习对象的学习顺序的过程。

已有的学习路径规划方法如遗传算法、粒子群优化等是一类启发式方法,存在随机性强、评价函数较难设定,以及训练时间长、易陷入局部最优解等问题。

发明内容

本发明实施例提供了一种基于深度学习的资源学习路径规划方法、装置、计算机设备及存储介质,旨在解决现有技术中在线教育平台的学习路径规划方法如遗传算法、粒子群优化等是一类启发式方法,存在随机性强、评价函数较难设定,以及训练时间长、易陷入局部最优解等问题。

第一方面,本发明实施例提供了一种基于深度学习的资源学习路径规划方法,其包括:

若检测到任意用户端上传的学习数据,获取所述学习数据对应的数据标签,将学习数据根据所述数据标签保存至对应的存储区域;

实时采集虚拟对象的学习数据点击记录,并存储至虚拟对象数据库;其中,所述虚拟对象数据库中存储有若干条学习数据点击记录,每一条学习数据点击记录对应一条知识学习记录数据;

在虚拟对象数据库中根据预设的筛选条件获取目标数据组成样本集,根据所述样本集中各目标虚拟对象对应的学习记录轨迹进行模型训练,得到预测模型;以及

若接收到当前课程子轨迹信息初始输入特征,获取与所述当前课程子轨迹信息初始输入特征对应的当前课程子轨迹信息调整输入特征,将所述当前课程子轨迹信息调整输入特征输入至预测模型进行运算,得到输出结果。

第二方面,本发明实施例提供了一种基于深度学习的资源学习路径规划装置,其包括:

数据标签获取单元,用于若检测到任意用户端上传的学习数据,获取所述学习数据对应的数据标签,将学习数据根据所述数据标签保存至对应的存储区域;

点击记录采集单元,用于实时采集虚拟对象的学习数据点击记录,并存储至虚拟对象数据库;其中,所述虚拟对象数据库中存储有若干条学习数据点击记录,每一条学习数据点击记录对应一条知识学习记录数据;

预测模型训练单元,用于在虚拟对象数据库中根据预设的筛选条件获取目标数据组成样本集,根据所述样本集中各目标虚拟对象对应的学习记录轨迹进行模型训练,得到预测模型;以及

输出结果获取单元,用于若接收到当前课程子轨迹信息初始输入特征,获取与所述当前课程子轨迹信息初始输入特征对应的当前课程子轨迹信息调整输入特征,将所述当前课程子轨迹信息调整输入特征输入至预测模型进行运算,得到输出结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110362642.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code