[发明专利]一种基于深度学习的混凝土结构检测方法有效
申请号: | 202110371229.6 | 申请日: | 2021-04-07 |
公开(公告)号: | CN113096088B | 公开(公告)日: | 2022-09-02 |
发明(设计)人: | 舒江鹏;赵唯坚;张佳玮;姬熠冉 | 申请(专利权)人: | 浙江大学;浙江大学建筑设计研究院有限公司 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06V10/764;G06V10/774;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 邱启旺 |
地址: | 310058 浙江*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 深度 学习 混凝土结构 检测 方法 | ||
1.一种基于深度学习的混凝土结构检测方法,其特征在于,具体包括如下步骤:
(1)构建裂缝图像数据集:收集混凝土结构构件裂缝图像,按照混凝土结构的构件类型和损坏情况,对收集的混凝土结构图像进行标注,获得图像标签,随后通过移位、反射、翻转、缩放和颜色抖动对收集的混凝土结构图像进行图像增强预处理,获得裂缝图像数据集;所述裂缝图像数据集分为训练集和测试集;
(2)改进神经网络:将ImageNet上预训练好的ResNet34模型作为基础,先去掉ResNet34模型尾端的全连接层,并将AdaptiveAvgPool2d层、AdaptiveMaxPool2d层并联在预训练好的ResNet34模型尾部,随后依次与BatchNorm1d层、Dropout层、中间全连接层串联,再重复接上一层BatchNorm1d层与Dropout层,最后连接与输出类别个数相等的全连接层,获得改进的神经网络;
(3)训练改进的神经网络:将步骤(1)中训练集输入步骤(2)改进的神经网络中进行训练,对步骤(2)改进的神经网络的参数用优化算法Adam以0.0001的学习率进行训练,在训练过程中冻结住预训练好的ResNet34模型的前两个Block的参数,并将测试集分批输入训练的神经网络中验证;当测试集的输出结果与所述图像标签比较,准确率达80%以上,且准确率收敛,即完成对改进的神经网络的训练;
(4)再次收集混凝土结构构件裂缝图像,将其输入已经训练好的神经网络模型中,输出检测结果。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学;浙江大学建筑设计研究院有限公司,未经浙江大学;浙江大学建筑设计研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110371229.6/1.html,转载请声明来源钻瓜专利网。