[发明专利]一种基于深度学习的混凝土结构检测方法有效

专利信息
申请号: 202110371229.6 申请日: 2021-04-07
公开(公告)号: CN113096088B 公开(公告)日: 2022-09-02
发明(设计)人: 舒江鹏;赵唯坚;张佳玮;姬熠冉 申请(专利权)人: 浙江大学;浙江大学建筑设计研究院有限公司
主分类号: G06T7/00 分类号: G06T7/00;G06V10/764;G06V10/774;G06V10/82;G06N3/04;G06N3/08
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 邱启旺
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 混凝土结构 检测 方法
【权利要求书】:

1.一种基于深度学习的混凝土结构检测方法,其特征在于,具体包括如下步骤:

(1)构建裂缝图像数据集:收集混凝土结构构件裂缝图像,按照混凝土结构的构件类型和损坏情况,对收集的混凝土结构图像进行标注,获得图像标签,随后通过移位、反射、翻转、缩放和颜色抖动对收集的混凝土结构图像进行图像增强预处理,获得裂缝图像数据集;所述裂缝图像数据集分为训练集和测试集;

(2)改进神经网络:将ImageNet上预训练好的ResNet34模型作为基础,先去掉ResNet34模型尾端的全连接层,并将AdaptiveAvgPool2d层、AdaptiveMaxPool2d层并联在预训练好的ResNet34模型尾部,随后依次与BatchNorm1d层、Dropout层、中间全连接层串联,再重复接上一层BatchNorm1d层与Dropout层,最后连接与输出类别个数相等的全连接层,获得改进的神经网络;

(3)训练改进的神经网络:将步骤(1)中训练集输入步骤(2)改进的神经网络中进行训练,对步骤(2)改进的神经网络的参数用优化算法Adam以0.0001的学习率进行训练,在训练过程中冻结住预训练好的ResNet34模型的前两个Block的参数,并将测试集分批输入训练的神经网络中验证;当测试集的输出结果与所述图像标签比较,准确率达80%以上,且准确率收敛,即完成对改进的神经网络的训练;

(4)再次收集混凝土结构构件裂缝图像,将其输入已经训练好的神经网络模型中,输出检测结果。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学;浙江大学建筑设计研究院有限公司,未经浙江大学;浙江大学建筑设计研究院有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110371229.6/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top