[发明专利]基于实体关系级别注意力机制的事件检测方法有效

专利信息
申请号: 202110381780.9 申请日: 2021-04-09
公开(公告)号: CN113158667B 公开(公告)日: 2022-03-01
发明(设计)人: 汤景凡;曹祥彪;张旻;姜明 申请(专利权)人: 杭州电子科技大学
主分类号: G06F40/289 分类号: G06F40/289;G06F40/216;G06F40/30;G06F16/28;G06N3/04;G06N3/08
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱月芬
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 实体 关系 级别 注意力 机制 事件 检测 方法
【权利要求书】:

1.基于实体关系级别注意力机制的事件检测方法,其特征在于包括如下步骤:

步骤1、对原始文本中的单词和实体关系进行编码,分别获取词汇级别向量序列和实体关系级别向量序列;

步骤2、将步骤1的词汇级别向量序列输入依存Tree-LSTM,获取句子的词汇级别表示;

步骤3、将步骤1的实体关系级别向量序列输入双向LSTM,获取实体关系级别表示;

步骤4、利用词汇级别注意力机制获取句中第i个单词对第t个候选触发词的影响权重将句中的词汇级别表示加权平均,获取句子完整的语义信息

步骤5、利用实体关系级别注意力机制获取句中第j个实体关系对第t个选触发词的影响权重将句中每个实体关系级别表示加权平均,获取句中完整的实体关系信息

步骤6、针对第t个候选触发词,对语义信息实体关系信息根节点词汇级别表示以及候选触发词的词汇级别表示进行拼接,然后进行触发词识别和分类。

2.根据权利要求1所述的基于实体关系级别注意力机制的事件检测方法,其特征在于步骤1具体实现如下:

1-1.从KBP 2017英文数据集标注文件中获取实体提及、实体类型、实体关系、事件触发词;利用Stanford CoreNLP工具对数据集中原始文本进行分句、分词以及获取单词的词性和每个句子的依存树结构;然后创建词性向量表、实体类型向量表、实体关系向量表以及触发词类型向量表,其中在每个向量表中定义”空”类型对应的向量;随机初始化这些向量,在训练的时候更新这些向量;

1-2.首先查询预训练的Glove词向量矩阵、词性向量表、实体类型向量表;分别获取句子中每个词的词向量wi、词性向量wpos、实体类型向量we;然后查询实体关系向量表,获取句子中出现的每个实体关系对应的向量r;

1-3.每个单词真值向量为xi={wi,wpos,we},所以句子词汇级别向量序列W={x1,x2,...,xn-1,xn},实体关系级别向量序列R={r1,r2,...,rk-1,rk};其中n是句子的长度、k为实体关系的个数。

3.根据权利要求2所述的基于实体关系级别注意力机制的事件检测方法,其特征在于步骤2具体实现如下:

2-1.为了获取句子中每个单词的词汇级别表示,利用Stanford CoreNLP工具解析每个句子生成依存树结构,其中,每个单词对应依存树结构中的一个节点;在依存树结构基础上构建依存Tree-LSTM,将W={x1,x2,...,xn-1,xn}作为依存Tree-LSTM的输入,获取每个单词的词汇级别表示,第i个单词的词汇级别表示为以及包含整个句子信息的根节点的词汇级别表示为因此,句子的词汇级别表示序列其中i,root∈[1,n],n是句子的长度。

4.根据权利要求3所述的基于实体关系级别注意力机制的事件检测方法,其特征在于步骤3具体实现如下:

3-1.为了获取句子中实体关系级别表示,将句中实体关系级别向量序列R={r1,r2,...,rk-1,rk}输入双向LSTM,获取每个实体关系对应的前向隐含状态向量和后向隐含状态向量,和分别表示第j个实体关系对应的前向隐含状态向量和后向隐含状态向量,其中j∈k;为了和步骤2中依存Tree-LSTM的每个单词的词汇级别表示维度一致,采用求平均的方式获取第j个实体关系级别表示因此,句子的实体关系级别表示序列

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110381780.9/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top