[发明专利]利用声传播数据和无监督机器学习的海底沉积分类方法有效
申请号: | 202110381846.4 | 申请日: | 2021-04-09 |
公开(公告)号: | CN113221651B | 公开(公告)日: | 2023-06-02 |
发明(设计)人: | 屈科 | 申请(专利权)人: | 广东海洋大学 |
主分类号: | G06F18/2431 | 分类号: | G06F18/2431;G06F18/214;G06N3/088;G06N20/00 |
代理公司: | 重庆市信立达专利代理事务所(普通合伙) 50230 | 代理人: | 包晓静 |
地址: | 524003 *** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 利用 传播 数据 监督 机器 学习 海底 沉积 分类 方法 | ||
1.一种利用声传播数据和无监督机器学习的海底沉积分类方法,其特征是:具体包括以下步骤:
步骤1:基于物理机制生成声场分布值,将作业海域的环境波导参数和典型沉积分类的声学参数输入计算模型,从而输出声场分布值,具体方法为:将所述的环境波导参数和典型沉积分类的声学参数输入简正波声场计算程序KRAKENC中,计算水听器接收到的声压分布,对应生成沉积物样本共900组的声场分布值;
步骤2:生成训练数据集,在步骤1生成的900组声场分布值的样本基础上,加入零均值高斯白噪声,随机生成1000组叠加,此时的样本为900个沉积物样本,1000组白噪声,共生成900000组声场分布样本值;
步骤3:非监督机器学习分类,利用自组织竞争型神经网络对步骤2中的声场分布样本值进行训练,生成神经网络拓扑结构,以获得不同沉积类型神经元;
步骤4:获取最匹配神经元,求解声场分布的实测值与输出层的神经元间的Euclidean距离,将距离最小的输出层神经元确定为最匹配神经元,而最匹配神经元对应的沉积类型值即为对应的分类结果;
步骤3中所述的神经网络拓扑结构的输入层中将声压分布值、沉积厚度、沉积种类为一组向量Xn,共900000组向量,且所述神经网络拓扑结构的输出层设置为1000000个神经元。
2.根据权利要求1所述的一种利用声传播数据和无监督机器学习的海底沉积分类方法,其特征是:步骤1中所述的作业海域的环境波导参数为声传播所需要的除海底参数外的所有参数,且所述环境波导参数包括声速剖面、声源频率、源级、声源深度、传播距离和接收阵列的深度。
3.根据权利要求1所述的一种利用声传播数据和无监督机器学习的海底沉积分类方法,其特征是:步骤1中所述的典型沉积分类的声学参数采用经典的Hamilton分类标准,且所述的典型沉积分类的声学参数包括9种沉积物的密度、声速和吸收系数。
4.根据权利要求1所述的一种利用声传播数据和无监督机器学习的海底沉积分类方法,其特征是:步骤4中声场分布的实测值存在多组现场声场分布实测数据时,通过计算对应的分类结果的比例,即为当前沉积对应类型沉积类型的概率。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东海洋大学,未经广东海洋大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110381846.4/1.html,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置