[发明专利]一种基于改进Fast算法的商标检索方法及装置有效
申请号: | 202110393816.5 | 申请日: | 2021-04-13 |
公开(公告)号: | CN112926592B | 公开(公告)日: | 2022-07-26 |
发明(设计)人: | 徐荣青;陈思宇;申景金;常春耕;岳英杰 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06V10/26 | 分类号: | G06V10/26;G06V10/762;G06V10/764;G06K9/62;G06F16/583 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 柏尚春 |
地址: | 210023 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 基于 改进 fast 算法 商标 检索 方法 装置 | ||
1.一种基于改进Fast算法的商标检索方法,其特征在于,包括以下步骤:
(1)对待检索的商标图像进行预处理,解决商标图像中的过分割与欠分割问题;
(2)根据商标图像性质采用K-means聚类和计算商标图像熵,确定Fast检测算法中的自适应阈值;
(3)使用Hessian矩阵消除边缘响应,排除商标图像边缘信息带来的干扰;
(4)基于非极大值抑制算法,排除非局部极大值点,排除商标图像噪声干扰;
(5)对于提取的特征点建立商标图像特征词袋模型,并通过聚类生成对商标特征点的描述子;
(6)对各类商标图像特征点描述子进行SVM分类器训练,得到训练文件用于计算商标所属各类别的概率;
所述步骤(2)实现过程如下:
根据每个聚类类别中所有图像像素的一维灰度直方图,确定灰度集C,基于阈值变量t,灰度集可分为两部分:C0={1,2,...,...,t}和C1={t+1,t+2,...,L};计算每个聚类S的熵函数:
S=S0+S1
其中,为灰度集中第i位元素的概率分布,灰度集总概率分布为按照K-means聚类找到最大熵最小的部分的灰度变量tmin和最大熵最大的部分的灰度变量tmax;获得自适应阈值tadaptive=tmax-tmin;
所述步骤(3)实现过程如下:
某角点的Hessian矩阵H的两个特征值比较接近,利用矩阵的特性,在不计算特征值的情况下得出两个特征值的比值,即ratio值:
Tr(H)=Dxx+Dyy=α+β
Det(H)=DxxDyy-(Dxy)2=αβ
其中,Dij代表矩阵中(i,j)位置的微分算子;Tr是矩阵主对角线上元素的和,称为矩阵的迹;Det是矩阵行列式的值;α是矩阵H的最大特征值,β是最小特征值;令若就保留特征点,否则丢弃;
所述步骤(4)实现过程如下:
按照检测到的特征点为中心的3x3或者5x5窗口内,检测其余检测到的特征点,在区域内计算每一个特征点的响应函数,进行响应函数的排序,在区域内取响应函数最高的特征点为局部极大值点,其余的点都作为局部非极大值点处理,进行舍弃。
2.根据权利要求1所述的基于改进Fast算法的商标检索方法,其特征在于,步骤(1)所述的预处理过程如下:
利用Graph Cut将图像分为不同区域,生成图片的掩膜,送入Grab Cut进行分割。
3.根据权利要求1所述的基于改进Fast算法的商标检索方法,其特征在于,步骤(5)所述的图像特征词袋模型建立过程如下:
将特征点聚类后的一个簇作为图像特征词袋模型中的一个视觉单词,使用视觉单词生成一个码本集;对于码本集利用K-means聚类,降低特征维度,得到商标图像描述子。
4.一种基于改进Fast算法的商标检索装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述计算机程序被加载至处理器时实现根据权利要求1-3任一项所述的基于改进Fast算法的商标检索方法。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110393816.5/1.html,转载请声明来源钻瓜专利网。