[发明专利]基于实体对齐的多源异构知识图谱协同推理方法及装置有效
申请号: | 202110416650.4 | 申请日: | 2021-04-19 |
公开(公告)号: | CN112818137B | 公开(公告)日: | 2022-04-08 |
发明(设计)人: | 王晓;杨林瑶;辛柯俊;张俊;王飞跃 | 申请(专利权)人: | 中国科学院自动化研究所 |
主分类号: | G06F16/36 | 分类号: | G06F16/36;G06K9/62;G06N5/04 |
代理公司: | 北京路浩知识产权代理有限公司 11002 | 代理人: | 程琛 |
地址: | 100190 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 实体 对齐 多源异构 知识 图谱 协同 推理 方法 装置 | ||
1.一种基于实体对齐的多源异构知识图谱协同推理方法,所述方法应用于智能体,其特征在于,包括:
基于待推理实体对,以及所述待推理实体对的查询关系,确定所述查询关系的等价关系路径;所述等价关系路径包括跨知识图谱的等价关系路径;
将各等价关系路径对应的特征向量输入至关系推理模型,得到所述查询关系对应的推理结果;所述推理结果为所述智能体选择所述查询关系的概率;所述推理结果用于补全知识图谱;
其中,所述关系推理模型是基于正样本三元组的等价关系路径对应的特征向量、负样本三元组的等价关系路径对应的特征向量训练得到的,各正样本三元组是从多个知识图谱中获取的,且各正样本三元组的关系类型与所述查询关系类型相同,各负样本三元组是基于各正样本三元组的k阶邻居确定的。
2.根据权利要求1所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述基于待推理实体对,以及所述待推理实体对的查询关系,确定所述查询关系的等价关系路径,包括:
基于所述待推理实体对的查询关系、多个知识图谱的三元组以及对齐锚链,确定强化学习环境;所述对齐锚链用于连通多个知识图谱中的三元组;
基于所述待推理实体对,在所述强化学习环境中确定所述查询关系的等价关系路径。
3.根据权利要求2所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述对齐锚链是基于如下步骤确定的:
将所述多个知识图谱输入至嵌入模型,得到所述嵌入模型输出的实体和关系嵌入向量;
若任意两个嵌入向量之间的距离小于预设值,则为对应的两个实体添加所述对齐锚链;
其中,所述嵌入模型是基于正样本实体对以及负样本实体对训练得到的,所述正样本实体对为多个知识图谱中的对齐种子,所述负样本实体对是基于各正样本实体对的k阶邻居确定的。
4.根据权利要求3所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述将所述多个知识图谱输入至嵌入模型,得到所述嵌入模型输出的实体和关系嵌入向量,包括:
将所述多个知识图谱输入至所述嵌入模型的图注意力层,得到所述图注意力层输出的实体初始嵌入向量;
将所述实体初始嵌入向量输入至所述嵌入模型的翻译向量层,得到所述翻译向量层输出的实体和关系嵌入向量。
5.根据权利要求2所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述基于所述待推理实体对的查询关系、多个知识图谱的三元组以及对齐锚链,确定强化学习环境,包括:
基于所述待推理实体对的查询关系,在所述多个知识图谱的三元组中确定用于构建强化学习环境的训练集;所述训练集为关系类型与所述查询关系类型相同的三元组;
基于所述训练集,以及所述对齐锚链,确定所述强化学习环境。
6.根据权利要求2所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述基于所述待推理实体对,在所述强化学习环境中确定所述查询关系的等价关系路径,包括:
在所述强化学习环境中,以所述待推理实体对的头实体作为起点,根据状态转移规则跳转,并根据所述强化学习环境的奖励更新参数,直至成功到达所述待推理实体对的尾实体,并将对应的成功路径作为所述查询关系的等价关系路径。
7.根据权利要求6所述的基于实体对齐的多源异构知识图谱协同推理方法,其特征在于,所述以所述待推理实体对的头实体作为起点,根据状态转移规则跳转,包括:
以所述待推理实体对的头实体作为起点,在每次选择下一跳关系类型之前,基于Mask机制滤除不可行的关系类型,并对剩余关系类型进行概率归一化后再进行概率化随机选择,确定下一跳关系类型。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110416650.4/1.html,转载请声明来源钻瓜专利网。