[发明专利]基于用户操作判断业务风险的方法和装置有效
申请号: | 202110492178.2 | 申请日: | 2021-05-06 |
公开(公告)号: | CN113409050B | 公开(公告)日: | 2022-05-17 |
发明(设计)人: | 张长浩;傅欣艺;周璟;傅幸;王维强 | 申请(专利权)人: | 支付宝(杭州)信息技术有限公司 |
主分类号: | G06Q20/40 | 分类号: | G06Q20/40;G06N3/04;G06N3/08 |
代理公司: | 北京亿腾知识产权代理事务所(普通合伙) 11309 | 代理人: | 陈霁;周良玉 |
地址: | 310000 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 基于 用户 操作 判断 业务 风险 方法 装置 | ||
1.一种基于用户操作判断业务风险的方法,所述方法由客户端执行,所述客户端提供多种服务业务,所述方法包括:
接收针对目标业务的第一操作,所述目标业务是所述多种服务业务之一,所述第一操作是向服务端提交所述目标业务的业务请求之前的预定操作;
响应于所述第一操作,在第一执行链路中,获取用户通过所述客户端执行的历史操作序列,将所述历史操作序列对应的特征序列输入预先训练的风险预测模型,得到所述目标业务的风险分数,将所述风险分数发送给所述服务端;
在与所述第一执行链路并行执行的第二执行链路中,对所述目标业务进行继续处理,直至向所述服务端提交所述目标业务的业务请求;以使所述服务端根据所述业务请求和所述风险分数,判断所述目标业务是否具有预设类别的风险。
2.如权利要求1所述的方法,其中,所述目标业务属于支付业务,所述第一操作包括以下之一:启动收银台,展示收钱码,展示付钱码。
3.如权利要求1所述的方法,其中,所述历史操作序列包括针对所述目标业务之外的业务的操作。
4.如权利要求1所述的方法,其中,所述历史操作序列包括:
所述服务端能够感知的粗粒度操作和所述服务端不能够感知的细粒度操作。
5.如权利要求4所述的方法,其中,所述粗粒度操作包括:
浏览、收藏或加购;
所述细粒度操作包括:
点击、滑动或曝光。
6.如权利要求1所述的方法,其中,所述特征序列对应于多项特征;所述风险预测模型包括特征提取网络;所述特征提取网络用于通过卷积处理的方式,将同一操作的不同特征对应的表征聚合,得到对应于同一操作的融合表征向量。
7.如权利要求6所述的方法,其中,所述多项特征包括以下至少一项:
访问页面、页面停留时间、距离当前的时间间隔、绝对时间、日期。
8.如权利要求6所述的方法,其中,所述风险预测模型还包括编码器和对应于多个风险预测任务的各预测网络;
所述编码器用于根据各操作分别对应的融合表征向量,通过卷积处理和自注意力机制,得到各操作分别对应的各编码向量;
所述各预测网络中的任一预测网络基于所述各编码向量与其对应的风险预测任务的权重,对所述各编码向量进行加权求和,得到目标域表征向量,根据所述目标域表征向量,确定其对应的风险预测任务的风险分数。
9.如权利要求8所述的方法,其中,所述风险预测模型采用如下方式进行训练:
采用自监督代理任务对所述特征提取网络进行预训练;
将预训练后的所述特征提取网络的参数固定,利用训练样本具有的第一风险预测任务的标签对所述编码器和第一预测网络进行训练;其中,所述第一风险预测任务为所述多个风险预测任务中的任一风险预测任务,所述第一预测网络对应于所述第一风险预测任务。
10.如权利要求9所述的方法,其中,所述自监督代理任务包括:遮蔽所述特征序列中对应于同一操作的所有特征对应的特征值,预测遮蔽的部分或全部特征的特征值。
11.如权利要求8所述的方法,其中,所述风险预测模型采用如下方式进行训练:
利用训练样本具有的第一风险预测任务的标签对所述特征提取网络、所述编码器和第一预测网络进行训练;其中,所述第一风险预测任务为所述多个风险预测任务中的任一风险预测任务,所述第一预测网络对应于所述第一风险预测任务。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于支付宝(杭州)信息技术有限公司,未经支付宝(杭州)信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110492178.2/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种电熔管道压装用的三通压装工具及其制造方法
- 下一篇:微型双孔精密注射泵